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ABSTRACT: As the final part in a series of articles on numerical simulations in solid-state
NMR (Concepts Magn Reson 17A: 117–154, 2003 and Concepts Magn Reson Part A 18A: 1–23,
2003), aspects of simulations of NMR responses from powders are discussed. The underlying
equations for powder averaging are derived, and it is demonstrated how powder averages
may be estimated numerically. Orientational symmetry in solid-state NMR is summarized
and exploited to achieve more efficient calculations. Explicit computer code in C/C�� is
given for simulation of NMR spectra from powders containing (1) two homonuclear spins-1/2
in a static sample and (2) a heteronuclear two spin-1/2 system under magic-angle-spinning
conditions. © 2003 Wiley Periodicals, Inc. Concepts Magn Reson Part A 18A: 24–55, 2003
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INTRODUCTION

NMR is applied extensively for obtaining structural
and dynamical information in a wide range of solid
systems. Internuclear distances and molecular geom-
etries may be probed directly through the measure-
ment of anisotropic NMR interactions in solid sam-
ples. For example, the determination of internuclear
distances may be obtained from dipolar couplings and
the estimate of interbond and dihedral angles may be

made by combining information of orientations of the
chemical shift, dipolar or quadrupolar tensors (1–5 ).

Single crystals usually provide the most accurate
structural information. However, many compounds do
not allow for growing large crystals suitable for anal-
ysis. This applies, for instance, to many biomolecular
systems. In general, a more feasible alternative to
using single crystals is performing NMR experiments
on powders. The spectral resolution is degraded sig-
nificantly, but many experimental techniques are
available to circumvent this problem, including magic-
angle-spinning (MAS) and multiple-pulse techniques
(1–7 ).

This article deals with the problem of numerically
simulating solid-state NMR spectra from powders
under different experimental conditions. It constitutes
the third and final part of a series of publications: The
two preceding articles, Ref. (8 ) and Ref. (9), will be
referred to as “Part I” and “Part II,” respectively. Part
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I outlined theoretical formalisms for calculating NMR
time-domain signals and frequency-domain spectra
for so-called dynamically inhomogeneous problems
(10). Part II described how these may be implemented
numerically in computer programs, relevant for sim-
ulating the NMR response from a single crystal. How-
ever, the NMR time-domain signal and frequency-
domain spectrum depend on the orientation of the
molecule with respect to the static magnetic field
direction. When simulating spectra of powders com-
prising a large number of microscopically small crys-
tals, it is necessary to do a procedure called powder
averaging, involving an average over the signals from
all crystallites. In this article, we incorporate the re-
sults of Parts I and II to address the problem of
calculating spectra from nuclear spins evolving under
dynamically inhomogeneous Hamiltonians in pow-
ders.

This article is organized as follows: First, the
reasons for the orientational dependence of the
NMR signal is explained and the basic equations
for performing powder averages are derived. Next,
orientational symmetry in solid-state NMR is ex-
plained as well as how powder averaging may be
implemented numerically. Finally, we address two
representative problems in solid-state NMR of
powders: Calculation of the NMR spectrum of (1) a
homonuclear system of two coupled spins-1/2 in a
static sample and (2) a heteronuclear system of two
coupled spins-1/2 under MAS conditions. The latter
case is generic for simulations of separated local
field (SLF) experiments (2– 4, 11–13). A general
introduction is given to each case and explicit
C/C�� programs are listed in Appendices B and
C. The complete source code used in this article is
available from Ref. (14 ).

PRINCIPLES OF POWDER AVERAGING

Orientational Dependence of the NMR
Signal

The NMR frequency �� for an anisotropic NMR
interaction � depends on the orientation of its spatial
second-rank tensor with respect to the direction of the
static magnetic field B� 0, as depicted in Fig. 1. The
orientation is denoted � � {�, �, �}, and is, depend-
ing on the experimental situation, parameterized by
various Euler angles, such as �PL or �PR. In a solid
sample, the orientation of each spatial tensor of the
spins in a rigid molecular fragment may be associated
with the orientation of the crystal with respect to the
magnetic field. The spatial tensor orientation changes

when the orientation of the crystal changes. There-
fore, we will use “crystal” (or “molecular”) orienta-
tion synonymously with “tensor” orientation.

This means that the NMR time-domain signal ob-
tained from an interaction also depends on orienta-
tion. The orientational dependence propagates from
the spatial tensor over to the time-domain signal as
follows:

	A20
t; ���L 3 Ĥ
t; �� 3 Û
t, t0; �� 3


̂
t; �� 3 s
t; �� [1]

as can be shown by combining Eqs. [I-60], [II-2],
[II-3], and [II-4]. In contrast to the mathematical
formalism used in Parts I and II, henceforth, the
dependence of NMR quantities on molecular orienta-
tion will be indicated explicitly.

Figure 1 The spectum generated from an NMR interac-
tion depends on the orientation of its spatial tensor with
respect to the static magnetic field direction. Here, we
assumed for simplicity that the orientation may be associ-
ated with only two Euler angles {�, �} so that it it can be
represented as a point on the unit sphere (see Fig. I-4). (a)
and (b) show two such orientations and their corresponding
NMR spectra, which are different from each other. (c) The
spectrum from a static powder corresponds to the sum of
spectra from a large number of randomly oriented crystal-
lites, each representing a certain tensor orientation. A broad
spectrum, spread over a large frequency range, is obtained.
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Powder Averages

Assume that the NMR sample consists of a powder
comprising a very large number Ncryst of small crys-
tallites. A finely ground powder for NMR studies
typically comprises 107–108 randomly oriented crys-
tallites. Each of these has a certain orientation � with
respect to the static magnetic field direction. In this
ensemble, we may find nj crystallites with orientation
�j. Assuming that Ncryst is infinite, there is an infinite
number of such “subsets” �j, each of which produces
an NMR signal s(t; �j). Due to the large number of
different crystallite orientations, each giving a char-
acteristic and orientation-dependent signal, the NMR
spectrum from such powders are typically spread over
a large range of frequencies, as illustrated in Fig. 1c.

In this section, we derive an expression for the
powder-averaged time-domain signal, which is the
average contribution from all subsets �j. It is denoted

s�
t� � �s
t; ���� [2]

where �. . .�� represents an average over all orienta-
tions and is calculated as follows:

s�
t� � Ncryst
�1 �

j

njs
t; �j� [3]

� �
j

�
�j�s
t; �j� [4]

Here, �(�j) � nj/Ncryst is the probability of finding
a crystallite with orientation �j in the powder. In
other words, the powder-averaged time-signal corre-
sponds to the sum of the signals deriving from each
orientation, weighted by the probability of finding that
particular orientation.

Every statistical distribution may be described in
terms of a probability density function (15 ), denoted
p(�) � p(�, �, �). It is defined such that the
probability of finding an orientation � within the
interval of orientations �a � � � �b corresponds to

�
�a � � � �b� � �
�a

�b

d� p
�� [5]

�(�a � � � �b) may be interpreted as the area
enclosed by the density function over the range of
orientations. The probability of finding an orientation
within the full range of Euler angles must be unity,
i.e., the probability density function is normalized

such that the integral of p(�) over the full range of
orientations, denoted V, is unity

�
V

d� p
�� � 1 [6]

with V � {0 � � � 2�, 0 � � � �, 0 � � �
2�}.

Assume that the crystals are randomly oriented.
Provided that Ncryst is large, the powder is referred to
as being isotropic, and all orientations �j are repre-
sented in the full range of Euler angles. Now consider
an orientation �j and an infinitely small change d�
around that value, corresponding to a simultaneous
change in each of the Euler angles �, �, and �, i.e.,
d� � (d�, d�, d�). �(�j) denotes the probability
of finding an orientation within [�j, �j � d�], i.e.,
the probability that simultaneously � is in the range
[�j, �j � d�], � is in the range [�j, �j � d�], and
� is in the range [�j, �j � d�]. Equation [5] may be
reformulated as

�
�j� � p
�j�d� [7]

which means that the probability of finding a crystal-
lite with orientation �j is given by the product of the
probability density (evaluated at �j) and the differ-
ential d�. Combination of Eqs. [4] and [7] gives

s�
t� � �
j

p
�j�s
t; �j�d� [8]

For infinitesimally small changes d�j, the summation
over all orientations �j may be replaced by an inte-
gration over the full range of Euler angles. This
results in the fundamental equation for the powder-
averaged time signal:

s�
t� � �
V

d� p
��s
t; �� [9]

� �
0

2�

d� �
0

�

d� �
0

2�

d� p
�, �, ��s
t; �, �, ��

[10]

The probability density depends on the orienta-
tional order in the sample, and the appropriate expres-
sion for p(�, �, �) is needed when evaluating Eq.
[10]. A general property of a probability density func-

26 EDÉN



tion depending on several variables, p( x, y), is that if
the distributions over the individual variables x and y
are statistically independent of each other (“uncor-
related”) one may factorize p( x, y) according to
p( x, y) � p( x) p( y) (15 ). Consequently, the two
probability densities p( x) and p( y) may be handled
separately. This applies to the probability density
function p(�, �, �) of an isotropic powder, and we
may therefore split the probability density into a prod-
uct of three separate functions, each depending solely
of one of the variables �, �, and �:

p
�, �, �� � p
��p
��p
�� [11]

In the following, we will simplify the expression for
the powder-averaged time-domain signal (Eq. [10])
by separately evaluating the expressions for each of
the individual probability densities p(�), p(�), and
p(�).

Because the dependence of p(�) may be handled
separately, we can exploit the geometric picture of
Fig. I-4, namely, that a molecular orientation {�, �}
may be represented as a point on the surface of the
unit sphere (i.e., a sphere with radius r � 1).

For uniform distributions of crystallites in the sam-
ple, the probability density of the statistical variable is
given by the inverse of its range of definition (15).
This may directly be applied to p(�) and p(�):

p
�� � p
�� � 
2���1 [12]

Finding the expression for p(�) requires some care
because the geometric interpretation of {�, �} as a
point on the unit sphere involves a nonlinear mapping
of the variable � from one-dimensional region 0 �
� � � onto the spherical surface. This implies that
p(�) is not a constant factor as in the cases p(�) and
p(�). Below, we derive an expression for p(�) using
geometric arguments.

The probability of finding an orientation in the
range {[�, � � d�], [�, � � d�]} is given by the
product p(�) p(�)d�d�. This corresponds to the area
confined by the shaded region d� on the sphere
shown in Fig. 2(a), divided by the total spherical
surface area. d� is usually referred to as the “solid
angle” (4, 16–18 ) of the orientation {�, �}. For
infinitesimally small changes d� and d�, the solid
angle may be approximated as a rectangle of sides l�
and l�. Its area is then given by

d� � l�l� [13]

Each of the sides of the rectangle makes the third side
of two isosceles triangles, as illustrated in Fig. 2(b). l�

and l� may be calculated from the “law of cosines”
(15 ). This states that if AB, AC, and BC are the
lengths of each side of a triangle, then BC may be
calculated from AB, AC, and the angle � between the

vectors AB� and AC�, according to


BC�2 � 
AB�2 � 
AC�2 � 2 AB � AC � cos � [14]

From Fig. 2(b) then it follows that l� is obtained from
the two known distances sin � and the angle d�:

l�
2 � 2 sin2�
1 � cos d�� [15]

Using the trigonometric identity 1 � cos x � 2
sin2( x/ 2) and solving for l� gives

l� � 2 sin � sin
d�

2
[16]

Because the function limx30sin x � x (15 ), we
accordingly approximate sin(d�/ 2) as (d�/ 2). Then,
the following expression is obtained for the distance
l�:

Figure 2 (a) Area d� on the unit sphere resulting from
small changes in the angles � and � around the point
parameterized by the orientation {�, �}. (b) � may be
approximated as a rectangle with sides of length l� and l�.
Each distance l� and l� is the third side of an isoceles
triangle. Note that the figure is not drawn to scale: d� and
d� are much smaller than the radius of the sphere.
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l� � sin �d� [17]

Identical arguments may be applied for obtaining the
following expression for the distance l�:

l� � d� [18]

Finally, inserting the expressions for l� and l� into
Eq. [13] gives the following expression for the solid
angle of the orientation {�, �}:

d� � sin �d�d� [19]

The probability �(�, �) of finding the orientation
{�, �} is finally calculated as the ratio between its
solid angle and the surface area of the unit sphere
(4�):

�
�, �� �
1

4�
d� �

1

4�
sin �d�d� [20]

This shows that the probability of finding an orienta-
tion within the range {[�, � � d�], [�, � � d�]}
scales as sin �. Consequently, a larger fraction of the
crystallites in the sample are oriented near the equator
of the sphere (� � �/2) than at the poles (� � 0 and
� � �). This means that there is a larger contribution
to the powder-averaged signal from orientations with
� � �/2 than with � � 0. This is also realized by
inspecting Fig. 2: For constant d� and d�, the solid
angle is larger near the equator than at the poles. After
substituting the expression for p(�) into Eq. [20], we
get

p
�� �
1

2
sin � [21]

Finally, substituting Eqs. [12] and [21] into Eq.
[10] gives the following expression for the powder-
averaged time signal from samples with randomly
oriented crystallites

s�
t� �
1

8�2 �
0

2�

d� �
0

�

d� sin � �
0

2�

d� s
t; �, �, ��

[22]

Note that for partially oriented samples different ex-
pressions are obtained for the probability densities
p(�), p(�), and p(�) than those given by Eqs. [12]
and [21]. Further, the integral in Eq. [22] may often be
simplified: As discussed in the next section, in many

cases the time signal is only dependent on one or two
orientational variables, and additionally, the integra-
tion ranges may be restricted further.

In the “frequency-domain” simulations discussed
in Part II, the NMR spectrum is calculated directly,
implying that the spectral frequencies and amplitudes
are the relevant functions for powder averaging:

S� 
�� �
1

8�2 �
0

2�

d� �
0

�

d� sin � �
0

2�

d�S
�
��� [23]

Orientational Variables

Here, we specify with which particular set of Euler
angles (�PL, �ML, �PR, or �MR) that � should be
identified for different spin systems and experimental
conditions. In the most general cases, the NMR signal
depends on all three angles of the triplet � � {�, �,
�}.

For a single interaction in static powders, the angle
�PL

� is random, and we should identify � � �PL
� in

Eq. [22]. An example of such a case is a powdered
sample in which each molecule contain a single (iso-
lated) nuclear site experiencing a chemical shift an-
isotropy (CSA) interaction. If the initial frame is cho-
sen to coincide with the PAS of the CSA tensor, the
laboratory-frame frequency �� � [A20

� ]L is given by
Eq. [I-94]. However, this expression is independent of
the angle �PL. From Eq. [1] it follows that neither the
Hamiltonian nor the propagator depends on this ori-
entational angle, and consequently neither the time-
domain signal. This implies that a calculation of the
NMR signal (using Eq. [22]) with a static powder
needs only an average over the two angles �PL and
�PL of the full triplet �PL

� . However, note that this
scenario is only valid within the high-field approxi-
mation (1–5 ) discussed in Part I; at zero magnetic
field B0, the m � 0 components of the Hamiltonian
must be taken into account (i.e., Eq. [I-59] must be
used) and the time signal will then be dependent on all
three orientational variables. Here, we disregard such
exotic cases.

In the case of several interactions in static pow-
ders, it is desirable to exploit a molecular frame into
which the principal axis system (PAS) of each inter-
action is initially transformed. For example, this sit-
uation applies to a powder containing spin pairs. For
such a system, one typically needs to include the CSA
tensor of each site, as well as the through-space di-
polar interaction. The PAS of these interactions do in
general not coincide, and it is desirable to first trans-
form each interaction into a common coordinate sys-
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tem, i.e., a molecular frame. Consequently, the angle
�ML is the random orientational angle in a powder
and, therefore, the target for powder averaging. Also
in this case, averaging over only two Euler angles is
required because Eq. [I-97] does not depend on �ML.

In rotating powders, using reference frames as in
Eq. [I-100], the relevant set of angles for averaging is
�MR, as then the final transformation between the
rotor and laboratory frame is identical for all crystal-
lites in the powder. As may be seen from Eq. [I-105],
averaging needs to be performed over the set of all
three Euler angles {�MR, �MR, �MR}; however, the
next section will provide us with a convenient way of
doing this. Three-angle averaging also applies to the
case of a single interaction involving an asymmetric
(� � 0) tensor if the transformation is performed from
its PAS directly to the rotor frame. In this case the
appropriate set of angles is �PR.

Powder averaging of the NMR signal from a single
symmetric tensor (� � 0) represents a particularly
simple case. In a static solid, the signal only depends
on �PL. This is because the only nonzero component
of the tensor in its PAS is A20 (Eq. [I-88]) and the
expression for the tensor component in the laboratory
frame (Eq. [I-94]) simplifies according to

	A20
� �L � �

m��2

2

	A2m
� �Pdm0

2 
�PL
� �exp��im�PL

� � [24]

� 	A20
� �Pd00

2 
�PL� [25]

The same argument applied to Eq. [I-102] shows
that in a rotating solid the signal only depends on the
two angles �PR and �PR, as is realized by modifying
the sequence of transformations given in Eq. [I-100],
and instead transform the PAS of the tensor directly
into the rotor frame:

	A
7

�

2��L � 	A

7
�

2��PD̂
2�
�PR�D̂


2�
�RL
t�� [26]

The laboratory frame m � 0 component for a sym-
metric tensor is then

	A20
� �L � �

m��2

2

	A20
� �PD0m

2 
�PR
� �Dm0

2 
�RL
t�� [27]

Using the definition of the time-dependent Euler
transformation angles �RL(t) � {��r t, �m, 0} (Eq.
[I-99]) and applying Eq. [I-49] twice gives

	A20
� �L

� �
m��2

2

	A20
� �Pd0m

2 
�PR�exp��im�PR�dm0
2 
�m�exp�im�r t�

[28]

It follows that the expression for [A20
� ]L depends on

�PR but is independent of �PR as in the case of the
static powder. However, unlike the scenario with a
static sample, Eq. [28] also carries a dependence on
�PR due to the additional transformation to the rotor
frame.

Above, the orientational dependence of the NMR
signal was motivated by inspecting the equations re-
lating the spatial tensor from its PAS to the laboratory
frame. Here, an alternative picture is given: The static
magnetic field may be represented as a vector and its
direction can therefore be specified by two Euler
angles. The NMR signal depends only on the relative
orientation between the static field and the interaction
tensor. Instead of transforming the PAS of the tensor
into the laboratory frame (parameterized by �PL),
one may equally well transform the field vector into
the PAS of the interaction; the latter transformation
can be achieved using only two Euler angles, as the
orientation of a vector may, in any coordinate system,
be specified by two Euler angles (see Fig. I-4). There-
fore, for static solids the powder averaging is only
required over two orientational variables.

So, why then are all three angles {�, �, �} in
general needed when calculating powder averages of
rotating samples? The reason is that a direct transfor-
mation between the molecular and laboratory frames
is time dependent. Powder averaging over time-de-
pendent angles would be very inconvenient, if at all
possible. The additional transformation employed
from the molecular frame to the rotor frame solves
this problem by separating the time dependence from
the orientational dependence. The price paid, how-
ever, is a lower symmetry of the problem compared to
the static case. This is because parameterizing the
transformation from an arbitrarily chosen molecular
frame to the rotor frame requires in general all angles
of the Euler triplet.

Nevertheless, as demonstrated in the next section,
in many cases in rotating solids the powder averaging
may in practice be reduced to integration over only
two Euler angles due to the presence of an additional
symmetry. This symmetry is absent for a singe crystal
but is present in isotropic powders. Moreover, the
integration ranges may often be reduced because the
NMR signal possesses certain symmetry properties
with respect to the orientational variables.
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ORIENTATIONAL SYMMETRY IN
SOLID-STATE NMR

Carousel Symmetry in Rotating Solids

In the following, we consider an isotropic powder
undergoing MAS with a dynamically inhomogeneous
Hamiltonian, assuming that several anisotropic inter-
actions are involved and that all tensors are expressed
in a molecular frame, such that the powder averaging
involves an integration over the orientational variable
�MR � {�MR, �MR, �MR}. Throughout this section,
we will carefully indicate the orientational depen-
dence of all entities, but for brevity we identify {�, �,
�} � {�MR, �MR, �MR}. Hence, � here denotes the
angles �MR relating the molecular and rotor frames.

For powder averaging in rotating solids, the Euler
angle � plays a special role and provides a useful
property for the spin Hamiltonian. For isotropic pow-
ders, this opens up a route to handling the average
over � through a closed analytic expression. This
holds in general for simulation of any spin system
subjected to sample spinning, as long as no RF fields
are applied and the initial density operator is not
dependent on the orientation of the molecule at the
start of the experiment (19–24). This applies to all
dynamically inhomogeneous cases treated in Parts I
and II. As far as powder averaging is concerned,
simulations of MAS and static experiments may then
be treated on equal footing; “explicit” averaging is
only required over two Euler angle components.

The expression for the spatial tensor component
��(t; �) � [A20

� (t; �)]L is given by Eq. [I-102].
This frequency enters the spin dynamics when the
Hamiltonian for the spin interaction is constructed. To
separate out the dependencies of �� on the various
orientational variables �, �, and �, we insert Eq.
[I-49] into Eq. [I-102]. This gives

��
t; �� � �
m�,m��2

2

	A2m�
� �Mdm�m

2 
��dm0
2 
�m�

� exp��im���exp�im�r�t �
�

�r
��

[29]

The last exponential factor may be interpreted as
follows: The angle � is equivalent to a shift in time by
�/�R. Note that the angles � and �r t correspond to
rotations around the same axis, namely, the z-axis of
the rotor frame.

In an isotropic powder, all values of � are repre-
sented, so that given an arbitrary orientation �a �

{�, �, �} we may also find the orientation �b � {�,
�, 0}. If these two Euler triplets are substituted into
Eq. [29] one obtains the following relationship be-
tween the interaction frequency ��

a of the crystallite
orientation �a and that of �b:

��
a 
t; �, �, �� � ��

b 
t � �/�r; �, �, 0� [30]

Hence, the spatial tensors from two crystallite orien-
tations differing only in the value of � give the same
NMR frequencies as the sample rotates but at differ-
ent points in time, as is illustrated in Fig. 3. This
relationship between the time dependence of the ten-
sor and its orientation � is referred to as “carousel
symmetry” (24 ). The terminology stems from the sim-
ilarity to the situation of a carousel in an amusement
park: Two persons riding on the carousel follow the
same circular path, and see the same views, but at
shifted time points. We stress that carousel symmetry
only applies to powders having crystallites that are
isotropically distributed with respect to �, i.e., all
values 0 � � � 2� are represented for each pair {�,
�} in the powder.

For later calculations, it is useful to separate out the
dependence on the angle � in the expression for the
Fourier components of the interaction frequency. We
rewrite Eq. [29] as follows:

��
t; �� � �
m��2

2

��

m�
t; ��exp�im�r t� [31]

Figure 3 Visualization of “carousel symmetry” in a pow-
der under sample rotation around the rotor frame axis z�R.
Each “tensor orientation” is depicted as a circle on the
spherical surface. Two carousels are shown, each compris-
ing orientations with fixed {�, �} values. Note that in this
figure a rotation around the z�R-axis corresponds to a change
in the Euler angle �: Different members of the carousel only
differ in their values of �. (a) shows the positions of the
carousel members at t � t0 and (b) the same carousels at
t � t0 � �r /4, i.e., after the sample has rotated by �/2,
corresponding to a quarter of a rotational period. The arrows
indicate the same carousel member (labeled by a “white
circle”) at the two different time points.
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with the Fourier components obtained from Eq. [29]
according to

��

m�
t; ��

� �
m���2

2

	A2m�
� �Mdm�m

2 
��dm0
2 
�m�exp��im���exp��im��

[32]

As the dependence on � only appears in the rightmost
factor, we have the following relationship between the
Fourier components ��

(m) from different carousel
members (i.e., orientations only differing in the value
of �):

��

m�
t; �, �, �� � ��


m�
t; �, �, 0�exp��im�� [33]

Consequences of Carousel Symmetry. We continue
to examine the consequences of the carousel symme-
try in isotropic powders undergoing MAS. The ge-
neric expression for the NMR time-domain signal was
shown in Part I to be

s
t� � �
u,v�1

� �
k���

�

auv

k�exp�i�uv


k�t� [34]

with the spinning sideband amplitudes

auv

k� � cuv


k��u�
̂
0��v��v�Q̂�u� [35]

given by a product involving matrix elements of the
initial density operator and observable as well as cuv

(k).
The latter is defined as a coefficient in the Fourier
expansion of the periodic phase ��uv(t, 0; �):

exp�i��uv
t, 0; ��� � �
k���

�

cuv

k�
��exp�ik�r t� [36]

Now, consider the orientational dependence of the
various components of Eq. [34]: If the NMR signal is
generated directly by applying an RF pulse to the spin
ensemble at thermal equilibrium, 
̂(0) is independent
on the molecular orientation. The same applies to the
observable operator Q̂. The spectral frequencies, �uv

(k)

� �uv
(0) � k�r, depend according to Eq. [II-12] on the

difference between the m � 0 Fourier components of
the Hamiltonian eigenvalues �v

(0) and �u
(0). However,

we defined these to comprise the isotropic parts of the
NMR interactions, which in turn are independent of
molecular orientation, as discussed in Part I. Next,

consider the coefficient cuv
(k), which depends on the

dynamic phase ��uv(t, 0). This, on the other hand,
involves the Hamiltonian eigenvalue Fourier compo-
nents �v

(m), which according to Eq. [II-14] comprise
the anisotropic (and, hence, orientation-dependent)
parts of the spin interactions,

��uv
t, t0; �� � 
i�r�
�1 �

m�0

m�1�uv

m�
��� exp�im�r t�

� exp�im�r t0�� [37]

with the difference in Fourier coefficients defined by

�uv

m�
�� � �v


m�
�� � �u

m�
�� [38]

As only the factor cuv
(k) is dependent on the molec-

ular orientation in Eq. [35], we focus in the following
on examining its expression further. To this end, we
define an auxiliary function �uv(t; �) according to
(25 )

�uv
t; �� � 
i�r�
�1 �

m�0

m�1�uv

m�
��exp�im�r t� [39]

Note the similarity between the function �uv(t; �),
dependent on one time index, and the dynamic phase
��uv(t, t0; �), which depends on two time indices.
Using the definition of �uv, we may (for t0 � 0)
express ��uv(t, 0; �) as follows:

��uv 
t, 0; �� � �uv 
t; �� � �uv 
0; �� [40]

This is easily verified by comparing Eqs. [37] and
[39]. Moreover, it follows by combining Eqs. [39] and
[I-106] that �uv is a real function.

Analogously to the proof that the dynamic phase
��uv is time periodic (see page 148 of Part I), one may
show that �uv(t; �) possesses the same periodicity.
Hence, it may be expanded in a Fourier series (anal-
ogously to Eq. [36]):

exp�i�uv
t; ��� � �
k���

�

Cuv

k�
��exp�ik�r t� [41]

The Fourier coefficients Cuv
(k) in Eq. [41] are related to

the coefficients cuv
(k) in Eq. [36]. This is not surprising

in view of Eq. [40]. We examine this relationship by
first exponentiating Eq. [40] (25):
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exp�i��uv
t, 0; ��� � exp�i�uv
t; �� � i�uv
0; ���

[42]

� exp�i�uv
t; ���exp��i�uv
0; ���

[43]

Since �uv (0; �) is a real number, exp{�i�uv(0;
�)} � exp{i�uv(0; �)}*, and we may write Eq. [43]
as

exp�i��uv
t, 0; ��� � exp�i�uv
t; ���exp�i�uv
0; ���*

[44]

Next, we insert the Fourier expansion (Eq. [41]) for
each of the exponential factors to obtain

exp�i��uv
t, 0; ���

� � �
k���

�

Cuv

k�
��exp�ik�r t��
exp�i�uv
t;���

�� �
k����

�

Cuv
(k�)(�)exp�ik��r � 0��*

exp�i�uv
0;���*

[45]

� �
k���

� �
k����

�

Cuv

k�
��Cuv


k��
��*exp�ik�r t� [46]

Note the time index t � 0 in the rightmost factor of
Eq. [45], making all exponential functions vanish in
the Fourier expansion. Equations [36] and [46] are
two forms of the Fourier series of the factor
exp{i��uv(t, 0)}; however, because a Fourier series is
unique, we may equate the coefficients of the two
series. Then, we get the following relationship be-
tween the components cuv

(k) and Cuv
(k) (24–26 ):

cuv

k�
�� � �

k����

�

Cuv

k�
��Cuv


k��
��* [47]

Next, we derive a useful relationship between the
Fourier coefficients Cuv

(k)(�) from different carousel
members, i.e., for crystallite orientations only differ-
ing in the Euler angle �. From the carousel symmetry
(Eq. [30]) follows the relationship

�uv
t; �, �, �� � �uv
t � �/�r; �, �, 0�

[48]

This may be verified by evaluating �uv(t � �/�r; �,
�, 0) (the right side of Eq. [48]) using Eq. [39]:

�uv
t � �/�r; �, �, 0�

� 
i�r�
�1 �

m�0

m�1�uv

m�
�, �, 0�exp�im�r�t �

�

�r
��

[49]

� 
i�r�
�1 �

m�0

m�1�uv

m�
�, �, 0�exp��im��

�uv

m�
�,�,��

� exp�im�r t� [50]

Using the relationship between the Fourier compo-
nents �u

(m) of orientations {�, �, 0} and {�, �, �} (Eq.
[33]) results in

�uv
t � �/�r; �, �, 0�

� 
i�r�
�1 �

m�0

m�1�uv

m�
�, �, ��exp�im�r t� [51]

which, by definition, equals �uv(t; �, �, �), as was to
be shown.

If both sides of Eq. [48] are Fourier expanded, we
obtain for the left side

�uv
t; �, �, �� � �
k���

�

Cuv

k�
�, �, ��exp�ik�r t� [52]

and for the right side

�uv
t � �/�r; �, �, 0�

� �
k���

�

Cuv

k�
�, �, 0�exp�ik�r�t �

�

�r
�� [53]

� �
k���

�

Cuv

k�
�, �, 0�exp��ik��exp�ik�r t�

[54]

Since Eq. [48] holds, we may equate Eqs. [52] and
[54] to show that the coefficient Cuv

(k)(�, �, �) orig-
inating from the orientation {�, �, �} is related to that
from the orientation {�, �, 0} according to (24, 26)
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Cuv

k�
�, �, �� � Cuv


k�
�, �, 0�exp��ik�� [55]

Hence, the coefficients Cuv
(k) originating from any car-

ousel member is related to that from � � 0. Combin-
ing Eqs. [47] and [55] then allows us to express
cuv

(k)(�) as follows (24, 26):

cuv

k�
�� � �

k����

�

Cuv

k�
�, �, ��Cuv


k��
�, �, ��* [56]

� �
k����

�

Cuv

k�
�, �, 0�Cuv


k��
�, �, 0�*

� exp��i
k � k���� [57]

Note that the �-dependence in Eq. [57] is factored out
as a single complex exponential. Remembering that
the sideband amplitude auv

(k) in the NMR spectrum is
related to cuv

(k) by a constant factor (Eq. [35]), this
implies that for a fixed pair of {�, �}, the kth-order
sidebands, arising from each member of the carousel,
are of equal magnitudes but different phases. The
amplitudes are in general complex numbers, leading
to spectral peaks not being purely absorptive (24).

This is, for example, obvious in the simulated spectra
shown in Figs. 4(a)–(c). Each of these spectra are
generated from each of three members of a “carou-
sel,” i.e., single crystallite orientations with fixed val-
ues of � and � but different values of �.

Carousel Averaging. We are now prepared for the
key result of this section; a fast route to calculate
averages over the angle � for samples having carousel
symmetry. We concluded earlier that the only orien-
tational-dependent part of the NMR time-domain sig-
nal is the coefficient cuv

(k)(�, �, �), which together
with the product auv � �u�
̂(0)�v��v�Q̂�u� defines the
amplitudes of the spinning sidebands in the spectrum.
Since auv is independent on the molecular orientation,
we may focus on averaging cuv

(k)(�) with respect to �,
i.e., to evaluate the integral

�cuv

k�
���� �

1

2� �
0

2�

d�cuv

k�
��. [58]

This is referred to as “carousel averaging,” as the
integration is carried out over all orientations � of a
given carousel. Inserting Eq. [57] into the carousel
average gives

�cuv

k�
���� � �

k����

�

Cuv

k�
�, �, 0�Cuv


k��
�, �, 0�*

�
1

2� �
0

2�

d� exp��i
k � k���� [59]

This expression involves the integral of the function
exp{�i(k � k�)�} over all orientations �, the result
of which may easily be seen by first considering a
general complex exponential function exp{iPx}, ex-
pressed as exp{iPx} � cos Px � i sin Px. As for
each positive value taken by the sine and cosine
functions in the range 0 � x � 2�, there is a
corresponding negative value of the same amplitude;
hence, the integral vanishes (or, viewed equivalently,
the area enclosed by the functions over the range 0 �
x � 2� is zero). This holds unless P � 0 (or, more
strictly, unless P is an integer multiple of �), for
which the cosine part gives the constant value  0

2�

dx � 2�. In the case of Eq. [59] this requires that the
Fourier indices k and k� must be equal to give a
nonvanishing contribution, i.e.,

Figure 4 Simulated MAS spectra at �r/ 2� � 2 kHz
generated with a CSA tensor for various tensor orientations
(�aniso/2� � 5 kHz and � � 0.35). The spectra in (a)–(c)
correspond to fixed values {� � �/3, � � �/4} but variable
� according to (a) � � 0, (b) � � �/4, and (c) � � �/2. The
spectra are not purely absorptive. The spectrum in (d) is the
result after averaging over all values of �. Note that all
peaks are positive and purely absorptive, as expressed by
Eq. [70].
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1

2� �
0

2�

d� exp��i
k � k���� � !
k, k�� [60]

The carousel average may then be expressed (24, 26)

�cuv

k�
���� � �

k����

�

Cuv

k�
�, �, 0�Cuv


k��
�, �, 0�*

� !
k, k�� [61]

� Cuv

k�
�, �, 0�Cuv


k�
�, �, 0�* [62]

Note that because the expression Cuv
(k)Cuv

(k)* is the
product of a complex number and its conjugate we
may write

�cuv

k�
���� � �Cuv


k�
�, �, 0��2 [63]

This shows that the carousel average of cuv
(k) may be

calculated by taking the square modulus of the Fourier
coefficient Cuv

(k) from the expansion of exp{i�uv(t;
�)}. However, the same average may alternatively be
obtained by taking the square modulus of the coeffi-
cient cuv

(k) itself:

�cuv

k�
���� � �cuv


k�
�, �, 0��2 [64]

This may be proven from the relationship between
cuv

(k) and Cuv
(k) (Eq. [47]), and noting that the sum over

all Fourier coefficients Cuv
(k) is equal to the function

exp{i�uv(0; �)},

exp�i�uv
0; ��� � �
k����

�

Cuv

k��
�� [65]

as may be shown by inserting t � 0 in Eq. [41]. For
brevity, in the following we do not explicitly indicate
the dependence on �. From Eq. [65] it follows that
Eq. [47] may be expressed

cuv

k� � Cuv


k�exp�i�uv
0��* [66]

Using this expression to evaluate the square modulus
�cuv

(k)�2 � cuv
(k)cuv

(k)* gives

�cuv

k��2 � 
Cuv


k�exp�i�uv
0��*� � 
Cuv

k�*exp�i�uv
0��� [67]

� Cuv

k�Cuv


k�*exp�i�uv
0��*exp�i�uv
0�

�1
[68]

� �Cuv

k��2 [69]

justifying the use of Eq. [64] for calculating the car-
ousel average.

Finally, by combining Eqs. [64] and [35] we may
calculate the carousel average sideband amplitude
auv

(k) according to

�auv

k�
���� � auv�cuv


k�
�, �, 0��2 [70]

Note that here we assumed the orientation � � 0, but
that the coefficient cuv

(k) from any value of � may be
used. Two important conclusions may be drawn from
Eq. [70]:

1. After averaging over �, the sideband amplitudes
are positive and purely real (24). This is evi-
denced by the spectrum in Fig. 4(d), corre-
sponding to the carousel average of the spectra
from all members of the given carousel.

2. The �-averaged sideband amplitudes may be
obtained from the components cuv

(k) evaluated
for one orientation {�, �, � � 0}. This “im-
plicit” averaging over � is appropriate for the
frequency domain simulations discussed in Part
II and summarized as a flowchart in Fig. II-5.
An example of the incorporation of Eq. [70]
into this algorithm is illustrated by the computer
code in Appendix C and discussed further in a
later section.

The sideband amplitudes averaged over all orien-
tations may accordingly be calculated from Eq. [23]
as an integral of the function �cuv

(k)(�, �, 0)�2 over the
full ranges of orientations � and �

�auv

k�
���� �

1

4�
auv �

0

2�

d� �
0

�

sin �d��cuv

k�
�, �, 0��2

[71]

Note that the carousel averaging assists in bringing
down the explicit integration (Eq. [23]) from three to
two orientational variables: This leads to faster and
more accurate numerical computations.

Classification of Orientational Symmetry

By “orientational symmetry” we mean the following:
Assume a set of orientations {�} comprising Nsym
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values, where each angle in the set is related to the
others by a certain mathematical operation. Each an-
gle defines the orientation of a crystallite in the sam-
ple. If it is a priori known that all orientations in {�}
produce identical NMR signals, it is sufficient to
calculate s(t; �) for only one of them. In many cases,
the NMR signal possesses such symmetries with re-
spect to the orientational variables. Carousel symme-
try is one such example. This allows for a reduction of
the integration range when calculating powder aver-
ages and hence to faster computations—in the present
example by a factor of Nsym.

As an illustration of orientational symmetry, con-
sider the following case: Assume that the NMR time-
domain signal depends on the two orientational angles
� and �, for which {0 � � � 2�, 0 � � � �}. This
corresponds to integration over the full spherical sur-
face. Consider two orientations related by inversion
through the center of the sphere: � � {�, �} and ��
� {� � �, � � �}, depicted in Fig. 5. If the signal
fulfills s(t; �) � s(t; ��) for all values of �, it is
possible to reduce the integration range of � to 0 �
� � �/2, giving integration over only the upper hemi-
sphere. The NMR spectrum is related by a Fourier
transformation of s(t; �), and also the spectra from
the two orientations are identical, i.e., S(�; �) �
S(�; ��) (Fig. 5). Hence, the same symmetry conse-
quences apply to the frequency-domain calculations
discussed in Part II.

Such orientational symmetries are common in sol-
id-state NMR (Fig. 6). As discussed in detail in Refs.
(21, 23, 26), the symmetry of the NMR signal may
conform to one of the following four cases:

1. The signal depends on all angles of the Euler
triplet. No further reduction of the full integra-
tion range {0 � � � 2�, 0 � � � �, 0 � � �
2�} is then in general possible. This applies to
spin systems experiencing time-dependent RF
fields, or if the initial density operator is orien-
tationally dependent at the start of the experi-
ment. The former case applies when simulating
experiments employing multiple-pulse se-
quences, for example, for the purpose of spin
decoupling (aiming at removing the effects of
the dipolar couplings) (1, 2, 4 ). The latter case
applies at the start of acquisition of the second
time dimension (“t2 � 0”) at different values
of evolution intervals (“t1”) in two-dimensional
NMR experiments, leading to a dependence of

̂(t1, t2 � 0) on the molecular orientation. The
procedure of carousel averaging discussed in
the previous section has to be modified to ac-
count for this situation (20, 23), as it was as-
sumed that �u�
̂(0)�v� in Eq. [35] is orientation
independent. This invalidates the use of Eq.

Figure 5 Example of orientational symmetry in solid-state
NMR: Two tensors at two orientations that are related by
inversion through the center of the sphere produce identical
NMR spectra. The consequence of this orientational sym-
metry for powder averaging is that it is sufficient to calcu-
late the spectrum for only one of the orientations.

Figure 6 Overview of orientational symmetry in solid-
state NMR and its implications for powder averaging (dis-
cussed in the Classification of Orientational Symmetry sec-
tion). The ranges of the orientational variables � and �
required in the powder averaging procedure are indicated in
each case. These ranges depend on the number of interac-
tions involved in the calculation and if the tensors are
axially symmetric (� � 0) or axially asymmetric (� � 0).
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[70] for performing carousel averaging in the
case of two-dimensional NMR experiments.
Whenever the signal depends on only the two

angles {�, �}, higher orientational symmetries are
always present. This holds for all static cases and
for all rotating solids having carousel symmetry
(provided that the calculation first employs Eq.
[70] for averaging over �). For all these cases, the
generic integral for the powder average is

s�
t� �
1

K �
0

�max

d� �
0

�max

sin �d� s
t; �, �� [72]

where �max, �max, and the normalization constant
K depend on the particular orientational symmetry
of the NMR signal. Depending on the spin system,
one of the three following cases apply.

2. Several interactions, employing an arbitrary mo-
lecular frame: This restricts the integration over a
hemisphere (26 ). Equation [72] is used with
�max � 2�, �max � �/2, and K � 2�:

s�
t� �
1

2� �
0

2�

d� �
0

�/ 2

sin �d� s
t; �, �� [73]

Two explicit examples of such cases are consid-
ered below.

3. Single axially asymmetric (� � 0) interaction, or
several interactions with coinciding principal axis
systems. If the transformations are performed di-
rectly from the PAS of the interaction, by identi-
fying �PL (static sample) or �PR (rotating sample)
with the orientational variable, it is sufficient to
integrate over an octant of the spherical surface
(26 ). This gives �max � �/2, �max � �/2, and K �
�/ 2:

s�
t� �
2

� �
0

�/ 2

d� �
0

�/ 2

sin �d� s
t; �, �� [74]

An example of such a case is the simulation of the
spectrum from the CSA interaction of one nuclear
spin in a powdered sample.

The final scenario is a special case of 3.
4. One axially symmetric (� � 0) interaction (e.g.,

a dipolar interaction), or several axially symmet-
rical interactions with coinciding principal axis
systems: By directly transforming from the PAS
of the interaction(s), it is sufficient to integrate

along the spherical arc {� � arbitrary; 0 � � �
�/2}:

s�
t� � �
0

�/ 2

sin �d� s
t; �� [75]

This follows directly by applying the arguments
given in section “Orientational Variables” to case
3 above.

Examples. We illustrate the consequences of orien-
tational symmetry for powder averaging by consider-
ing a heteronuclear 13C–1H spin pair from a molecular
fragment of an organic solid. Assume that the 13C
spectrum is to be calculated from a static sample in
the form of a finely ground powder. Three types of
spin interactions need to be taken into account: The
chemical shift interactions of each nuclear spin (in-
cluding isotropic as well as anisotropic shifts) and the
heteronuclear 13C–1H dipolar interaction. We know
that the total spin Hamiltonian is dynamically inho-
mogeneous because all interactions commute with
each other (see the discussion in Part I).

Assume that a molecular frame is chosen such that
its z-axis coincides with the C–H internuclear vector,
i.e., that the PAS of the dipolar interaction coincide
with that of the molecular frame. If the PAS of each
CSA tensor is transformed into the molecular frame
and this is used as the starting reference frame for the
subsequent powder averaging, the system conforms to
case 2 above. Consequently, powder averaging is
performed over �MR and �MR using Eq. [73], i.e.,
integrating over a hemisphere.

Next, assume that the 13C–1H dipolar interaction is
removed by the use of a heteronuclear decoupling
sequence (1, 2, 4) applied to the proton during the
signal acquisition. If the decoupling sequence in-
volves changing the RF amplitude, phase, or fre-
quency, an accurate numerical simulation must take
the RF pulses explicitly into account. As discussed in
Part I, because the RF Hamiltonian does not commute
with the Hamiltonian for the 1H chemical shift and
that for the heteronuclear dipolar coupling, the total
spin Hamiltonian is dynamically homogeneous. This
requires a “small-step” integration of the Schrödinger
equation (thus breaking the problem down to a se-
quence of piece-wise time-independent Hamiltoni-
ans), as explained in Part II. As far as powder aver-
aging is concerned, the spin system now conforms to
case 1, and averaging needs to be performed over the
full ranges of all three Euler angles.

We assume instead for simplicity that the hetero-
nuclear decoupling may be treated “phenomenologi-
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cally” in the sense that it effectively removes all
effects of the dipolar coupling (without considering
explicitly the decoupling mechanism) and furthermore
leaves all other spin interactions unaffected. While
this certainly is a crude approximation, it often accu-
rately accounts for the observed spin dynamics and
leads in this case to a significant simplification of the
spin dynamics calculation. Only two interactions re-
main, i.e., the chemical shift interactions of each spin.
Also, as discussed in more detail below, due to the
commutation of spin operators from different spin
species the 1H chemical shift need not be considered
in the calculation of the 13C spectrum. In other words,
the 1H chemical shift does not affect the 13C spin
dynamics, and the entire simulation reduces to calcu-
lating the powder spectrum from a single chemical
shift interaction. If the 13C CSA tensor is axially
asymmetric, this case conforms to 3 and powder av-
eraging is performed over the variables �PL and �PL

over the ranges {0 � � � �/2, 0 � � � �/2}.
However, if the tensor happens to be axially symmet-
ric, case 4 is relevant with averaging over only the
single variable �PL.

Finally, assume instead the MAS spectrum is to be
calculated from a sample comprising an ensemble of
“isolated” quadrupolar spins. If each spin of the en-
semble spin is subject to the first-order quadrupolar
interaction, but has negligible second-order quadru-
polar effects (27), its Hamiltonian is dynamically
inhomogeneous. While this is an uncommon situation
in quadrupolar NMR, it is relevant, for example, to
many cases of 2H and 7Li. For powder averaging, the
averaging over �PR is first carried out through Eq.
[70]. Once this is done, the orientational symmetry
with respect to �PR and �PR conforms to either case
3 or 4, depending on whether the electric field gradi-
ent tensor (27) is axially symmetric or axially asym-
metric, respectively.

In the following, we focus on cases involving at
most two orientational variables in the powder aver-
age calculation. In particular, this applies to all dy-
namically inhomogeneous problems for which we
outlined spin dynamic computational algorithms in
Part II and Part III. However, in the case of sample
rotation it is required that the carousel averaging (Eq.
[70]) is employed before averaging over � and �.

NUMERICAL ESTIMATES OF
POWDER AVERAGES

The Powder Average as a Weighted Sum

There exists no general analytic solution to the inte-
grals in Eqs. [22] and [72]. Instead, one has to resort

to a numerical approximation of the exact powder-
averaged NMR response. The integral is usually esti-
mated as follows: First, a set of orientations are se-
lected. Then, the NMR time-domain signal or
frequency-domain spectrum is calculated for each ori-
entation, and the powder average is approximated as a
weighted summation over the entire set of signals:

s��
t� � �
j�1

N�

wj
�s
t; �j

� �, [76]

Here, s��(t) represents the estimated powder average
using the discrete set � � {wj

�, �j
�} comprising N�

orientations and weights. The weights should be nor-
malized so that their sum equals unity. The goal is to
obtain a good approximation s��(t) of the exact pow-
der average s�(t), using the smallest possible number
of orientations N�. This is desirable because the com-
putation time grows linearly with N� and the calcu-
lation of the time signal or spectrum may be time
consuming even for a single orientation.

Selecting the Orientations

In this section, we briefly comment on some argu-
ments used when devising schemes for generating sets
of orientations for the purpose of powder averaging.
For details on the principles behind the various pow-
der methods we refer to Refs. (16–18, 26, 28–35 );
here, we will mainly be interested in using them.

The most intuitive approach is to select the orien-
tations randomly because this corresponds to the sit-
uation in the physical sample. However, this is an
inefficient strategy from a computational standpoint:
Often, 104–105 random orientations are needed for
obtaining accurate powder averages. Instead, the
problem of finding better solutions is usually attacked
by aiming for “small” sets that provide accurate pow-
der averages by aiming at uniform distributions of the
orientations using geometric arguments (16–18, 28–
32, 34 ).

When devising methods for selecting orientations,
the link between the Euler angles {�, �} and the polar
angles {�, "} is often exploited (see Fig. I-4): The
implementation of powder averaging is then to inte-
grate the orientationally dependent NMR signal over
the spherical surface. Depending on the region over
which the distributions are generated, powder meth-
ods may be classified either as “planar” or “spheri-
cal” (18, 34 ).

The aim of the spherical approaches is to find as
uniform a distribution as possible over the surface of
the unit sphere. There exist a vast number of solutions
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to this problem (16–18, 31, 34 ). As an example, we
describe the REPULSION method (18 ). The orienta-
tions are selected as follows: First, N� “particles” are
placed onto the spherical surface, the location of each
being parameterized by two Euler angles. Each parti-
cle is associated with a point charge, giving rise to a
repulsive force to its neighbors. The particles are
subsequently freely moved on the surface until the
total repulsive potential is minimized. This results in
a uniform distribution of orientations, with nearly
equal weights.

The planar methods (28–30, 34) first sample
points over the two-dimensional planar region {0 �
x � 2�, 0 � y � �}, where uniform distributions
are easier to arrange them over the spherical surface.
These samples are subsequently mapped onto the
sphere, i.e., the { x, y} coordinates are converted into
the Euler angles {�, �}. This requires taking the
weighting factor sin � factor in Eq. [22] into account.
The planar methods may be implemented in many
different versions depending on (1) how the planar
region is sampled and (2) how these samples are
subsequently mapped onto the sphere. The most com-
mon approach is to divide the two-dimensional inte-
gration range into a grid of rectangles of equal size,
and then choosing the samples { xi, yj} at the vertices
(“closed form”) or at the centers (“open form”) of the
rectangles (34 ).

One of the simplest and most commonly used
planar methods is the “STEP method.” It divides the
planar region {0 � x � 2�, 0 � y � �} into equal
meshes and maps the { x, y} coordinates onto the
sphere by identifying � � x and � � y. The weight
associated with {�j, �j} is given by wj � sin �j.

Another commonly used planar technique is the
ZCW method (28–30), named after inventors Za-
remba, Conroy, and Wolfsberg. It is used for integra-
tion over both two and three Euler components.

Appendix A contains the formulas for generating
powder sets of the STEP and ZCW methods under
various symmetries, as well as short C routines for
implementing them. Some STEP and ZCW sets are
visualized in Fig. 7. Other sets of orientations gener-
ated from a large variety of methods may be down-
loaded from the websites given in Refs. (36–38 ).

Various general criteria have been suggested for
probing the “efficiency” of a powder method. The
“ideal” scheme should provide sets of orientations
that are completely uniformly distributed over the
spherical surface. This gives equally weighted orien-
tations: wj � 1/N�. In practice, however, it is diffi-
cult to produce completely uniform distributions and
it is, therefore, necessary to compensate for the non-
ideality by assigning a weight to each orientation that

truly reflects its solid angle (16–18 ) in the weighted
summation (Eq. [76]).

Computer Implementations of
Powder Averaging

In a simulation program, Eq. [76] lends itself to a
convenient implementation in terms of loops over the
orientational variables. For each orientation, the NMR
time-signal/spectrum is calculated as described in Part
II. Then, the powder averaged signal/spectrum is up-
dated by adding the result from each orientation mul-
tiplied by its weight according to Eq. [76]. Two pos-
sible implementations of this procedure are shown as
flowcharts in Fig. 8. The orientations and weights
must be stored in the memory of the computer. This
can be arranged in either of the following ways:

1. The most flexible approach is to once store the
angles and weights in a file and retrieve them at

Figure 7 Selection of orientations plotted on the surface
over various regions of the sphere. These sets were gener-
ated by the STEP and ZCW methods by the routines given
in Appendix A. The total number of orientations comprised
by each set is indicated beneath its sphere, and the “size” of
each orientation reflects its weight wj, as defined by Eqs.
[105] and [114] for the STEP and ZCW schemes, respec-
tively.
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the start of each simulation. This procedure may
be implemented in various ways, for example,
by storing each of the lists of angles {�j},
{�j}, and {�j} as floating-point numbers in
one-dimensional arrays. Object-oriented lan-
guages, such as C��, offer more elegant solu-
tions: By defining a “Euler angle data type,” the
Euler angle triplet � may contain all three an-
gles in a single object. A primitive version of
such an “Euler angle class” (euler) was in-
troduced in Part II and will be used later.

2. If the expressions defining the orientations
and weights are attainable through closed for-
mulas, they may be calculated directly when
needed within the powder loop. Then, the
powder averaging (Eq. [76]) may be imple-
mented in terms of nested loops, as shown in
Fig. 8(b). This involves running over all val-
ues of the variable in the inner loop while
keeping the value of the variable in the outer
loop fixed. It is important to arrange the loops
so as to avoid unnecessary calculations that
slow down the performance of the program.
For example, an implementation of the STEP
method should employ the loop over � as the
outermost: For each value of �j, there are
N�N� orientations {�i, �j, �k} with i � 1,
2, . . . , N� and k � 1, 2, . . . , N�; the weight of
all these orientations is the same, as it is
proportional to sin �j. The evaluation of trig-
onometric functions are relatively time-con-
suming operations and should therefore be
done only once for each value �j.

Of the two approaches outlined above, we recom-
mend using the former: Depending on the experimen-
tal conditions to be simulated, specialized spin dy-
namics routines may be needed. The structure of the
powder loop, on the other hand, is the same for all
simulations of powders. Strategy 1 provides better
portability of the code and gives higher flexibility
when executing the simulation program because any
given set of orientations from any powder scheme can
conveniently be selected from a parameter file, in-
stead of being determined when the program is com-
piled. Usually, this also leads to faster execution of
the program because the orientations and the weights
themselves need not be calculated. Approach 2 has,
however, one advantage: During runtime, it requires
less computer memory because each orientation is
generated directly (“on the fly”) when it is needed,
and not stored in arrays before the powder loops start.

Figure 8 Flowcharts for two different loop implementa-
tions of powder averaging by (a) assigning the angles of the
Euler triplet simultaneously for each orientation and (b)
independently changing each of the angles �, �, and �. In
both cases, for each combination of Euler angles �i, �j, and
�k the time-domain signal is calculated for the given orien-
tation and the powder-averaged signal (spowder), estimated
as a weighted sum, is updated. In (b), the values �i and �j

in the two outer loops are fixed while the index k is incre-
mented. Similarly, a total of N�N� orientations are used for
a fixed value �i, before the outermost loop variable is
incremented.
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PRACTICAL RECOMMENDATIONS FOR
POWDER AVERAGING

Accuracy of the Simulated Data

When simulating NMR spectra of powders, it is im-
portant to ensure that the particular scheme for gen-
erating the orientational angles is implemented with
care so as to give correct results for any given situa-
tion. The simulation of accurate line shapes is espe-
cially important when interaction parameters are ex-
tracted by iterative fitting of simulations to
experimental data. Simulation artifacts induced by
insufficient or erroneous powder averaging give sys-
tematic errors in the determination of the interaction
parameters. Such aspects of powder averaging when
extracting interaction parameters through numerical
fitting procedures are discussed in Refs. (39, 40).

For calculated spectra of rotating solids, the inte-
gration error primarily shows up as erroneous ampli-
tudes of the spinning sidebands. The breadth of the
sideband pattern, as well as the relative sideband
amplitudes within the manifold, reflect the anisotropy
frequency and asymmetry parameter of the NMR
interaction tensor. Hence, when fitting simulations to
experimental results erroneous sideband intensities
produce errors in the estimate of these parameters.

In the case of static solids, the anisotropy and
asymmetry parameters are reflected in the shapes of
the powder patterns, as illustrated in Fig. I-7. As
discussed further below, simulations of spectra of
static powders require in general a larger number of
orientations than those of rotating samples because
the broad lines of static spectra require a certain
minimum number of orientations to be faithfully rep-
resented as a histogram of stick spectra of the type
discussed in Part II. Figure 9 illustrates the effects of
including insufficient number of orientations in the
powder average calculation of a spectrum from a
static sample: The line shapes are not smooth but
“rippled.”

The number of orientations necessary to produce
converged results is, of course, not known a priori.
Apart from the efficiency provided by the set of
angles, it depends on many factors, for example, the
size and relative orientations of the NMR interaction
tensors involved in the simulation, as well as on the
experimental conditions that are simulated. Usually, it
is necessary to perform a series of calculations with
identical parameters but using different numbers of
orientations in the powder average, until the simulated
data no longer change perceptibly when the size of the
sets of orientations are increased. For example, from

the simulated spectra in Fig. 9 we conclude that 2584
orientations is required for that particular case.

Choice of Powder Method

Powder schemes display different convergence prop-
erties depending on the given situation. In some ap-
plications there are large differences in performance
between different methods, whereas in other cases
they are of similar quality. Selection of a particular
method for generating the sets of orientations and
weights depends on the given situation, which usually
requires gaining insight by comparing different
schemes for several representative test simulations.
Here, we limit ourselves to briefly indicate our choice
of method in three generic cases, assuming averaging
over � and � only. For cases also requiring averaging
over � we recommend using sets of the three-angle
ZCW method as given in Refs. (29, 30).

1. Simulating spectra of static powders is a chal-
lenging problem from a powder averaging
standpoint because the line shapes are broad
and must be accurately represented over a large

Figure 9 Effect of including insufficient number of ori-
entations in the calculation of a static 13C NMR powder
spectrum of glycine. The spectra are obtained from (a) 233,
(b) 987, (c) 2584, and (d) 46,368 ZCW orientations gener-
ated over a hemisphere (see Fig. 7 for a graphic visualiza-
tion of such sets). The lineshape distortions (“rippling”) is in
particular evident in (a). The spectrum (c) is the output of
the computer program given in Appendix B and may be
taken as “converged” as it is indistinguishable from the
spectrum obtained by the larger number of orientations in
(d).
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frequency range. Often, many thousands of ori-
entations are needed to give smooth line shapes.
Here, we recommend using either the method of
Alderman et al. (16) or the two-angle ZCW
scheme (28–30, 32). They have proven to be
efficient for a wide range of problems, and large
sets of orientations may easily be generated.
See Appendix A for a ZCW implementation.

2. When simulating the spinning sideband patterns
generated from dynamically inhomogeneous
systems under MAS, a powder averaging tech-
nique called Gaussian spherical quadrature (26,
41, 42) has been demonstrated to be particularly
efficient, allowing for the calculation of accu-
rate sideband amplitudes using sets comprising
less than 100 orientations. Other well-adapted
schemes to these problems are ZCW (28–30)
and REPULSION (18).

3. The spectral peaks from strongly coupled spin
systems under MAS, or from experiments em-
ploying off-magic angle spinning, are often
much broader than those of case (2). Usually, a
few hundred orientations are required for con-
verged amplitudes and shapes of the spinning
sidebands. Here, we recommend using either
the ZCW method or REPULSION.

EXAMPLE 1: POWDER PATTERN OF A
STATIC SOLID

This section outlines how the NMR powder spectrum
from two homonuclear spins may be simulated, in-
cluding the chemical shift, dipolar, and J interactions.
A static sample of 13C2-labeled glycine in the form of
a finely ground powder represents such a case. A
ball-and-stick structure of a glycine molecule is
shown in Fig. I-1. In the following, we use the labels
“1” and “2” for the 13C spins of the carboxyl (COOH)
and methylene sites (CH2), respectively. The experi-
mental 13C spectrum recorded at a magnetic field of
9.4 T (corresponding to a 13C Larmor frequency of
�0/2� � �100.66 MHz) is shown in Fig. 10. During
the signal acquisition, high-power proton decoupling
(1, 2, 4 ) was employed to remove the heteronuclear
1H–13C dipolar couplings. Therefore, we assume in
the following discussion that we may consider the two
13C spins as isolated from the surrounding protons.
The NMR signal was recorded after first generating
observable transverse magnetization by a (�/ 2)y

pulse as discussed in Part I. In the framework of the
density operator formalism, the effect of the RF pulse
is to convert the thermal equilibrium spin pair ensem-
ble into an ensemble state represented by 
̂(0) � Îx �

Î1x � Î2x at the start of signal acquisition. The trans-
verse magnetization is subsequently allowed to evolve
under the various spin interactions, described by a
sum of time-independent Hamiltonians, whose ex-
pressions are derived below. The detected NMR time-
domain signal corresponds to the expectation value of
the operator Î�: s(t) � �Î��(t). Subsequent Fourier
transformation produces the frequency-domain spec-
trum S(�).

In the remainder of this section, we derive the form
of the spin Hamiltonian representative for the two
coupled 13C spins in a molecule of glycine and dis-
cuss an explicit computer implementation for calcu-
lating the NMR response from a powder of glycine.
The source code is given in Appendix B.

Hamiltonian

According to the theory given in Part I, we start
deriving the explicit form of the Hamiltonian from the
irreducible spherical tensor (IST) formalism (Eq.
[I-60]). The Hamiltonian including all interactions for
the spin pair 1–2 is given by

Ĥ � ĤCS
1 � ĤCS

2 � ĤD
12 � ĤJ

12 [77]

where ĤCS
1 and ĤCS

2 represent the chemical shift Ham-
iltonians of spins 1 and 2, respectively, whereas ĤD

12

and ĤJ
12 correspond to the dipolar and J-coupling

Hamiltonians, respectively.
The homonuclear dipolar Hamiltonian is obtained

by inserting the relevant tensor expressions from Ta-
ble I-2 into Eq. [I-60], resulting in

Figure 10 (a) Experimental 13C spectrum of a static pow-
der of 99% 13C2-labeled glycine acquired at a magnetic field
of 9.4 T. (b) Simulation of the spectrum using the program
in Appendix B and spin interaction parameters taken from
Ref. (48 ).
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ĤD
12 � CD	A20

12�LT̂20
12 [78]

� �D
12

1

	6

3Î1zÎ2z � Î1 � Î2� [79]

where �D
12 is the dipolar coupling frequency. Because

this problem involves several interactions, we employ
transformations via a molecule-fixed frame (Eq.
[I-95]):

�D
12 � 	6b12 �

m��2

2

D0m
2 
�PM

12 �Dm0
2 
�ML� [80]

where b12 is the dipolar coupling constant in Table
I-3.

Similarly, the J-coupling Hamiltonian is (ignoring
the second-rank contributions of the J-tensor for sim-
plicity)

ĤJ
12 � 2�J12Î1 � Î2 [81]

Next, we consider the chemical shifts and construct
the Hamiltonian for spin 1. The expression for spin 2
is identical, with the label “2” replacing “1.” The
chemical shift Hamiltonian ĤCS

1 is conveniently sep-
arated into its isotropic and anisotropic parts, deriving
from the l � 0 and l � 2 ISTs, respectively:

ĤCS
1 � Ĥiso

1 � ĤCSA
1 [82]

From the calculation given on page 128 of Part I, it
follows that the isotropic part may be written

Ĥiso
1 � �iso

1 Î1z [83]

with the isotropic chemical shift frequency �0
1 given

by Eq. [I-84]. A similar treatment of the CSA Ham-
iltonian results in

ĤCSA
j � �CSA

1 	2

3
Î1z [84]

with the anisotropic chemical shift frequency

�CSA
1 � �

m,m���2

2

	�2m�
1 �PDm�m

2 
�PM
1 �Dm0

2 
�ML� [85]

and �2m�
1 are the PAS components of the CSA tensor

in frequency units (discussed on page 132 of Part I).
When the expressions for the various spin Hamil-

tonians are summed up in Eq. [77], we get the total
Hamiltonian for the spin pair of a single molecular
orientation �ML.

Numerical Implementation

Overall Structure. The C code for the computer im-
plementation that carries out the explicit calculations
is given in Appendix B. In this section we explain the
code. It follows the general steps for the spin dynam-
ics calculation outlined in Part I, using the code given
in Part II and with an overall structure conforming to
the general hierarchy of a C/C�� program (43–45 ).

The program starts with including some files that
defines general utility functions needed for the calcu-
lations. These involve: (1) the file math.h of the
standard C library (43), containing functions for gen-
eral mathematical operations; (2) complex.h and
matrix.h [obtained from the GAMMA library (46,
47 )], for handling complex numbers and matrices,
respectively; (3) aux.h, comprising routines for dy-
namic memory allocations and Fourier transforms
(14 ); (4) spinOperators.h, defining the matrix
representations for the spin operators used; (5)
spinDynamics.h, which corresponds to the rou-
tines for calculating the NMR response in the time
and/or frequency domains from a single crystallite in
the powder. These routines were given explicitly in
Part II; (6) powderSchemes.h, comprising the
functions given in Appendix A.

Next, the data-type spinPars is defined: A vari-
able of this type contains three matrices, each of
which represents a second-rank tensor of one interac-
tion (in this case, two CSA tensors and one dipolar
tensor).

After these initializations, the remaining of the
code is structured into three routines as follows:
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void getPowderSpectrumStatic( const spinPars &data,const matrix &Hiso, const matrix &rho0,
const matrix &Q, complex *ampPowder,int n_points,double sw,
euler *ang_list,double *weight_list,int n_angles)

{
. . .
}

void getPowderSignalStatic( const spinPars &data,const matrix &Hiso, const matrix &rho0,
const matrix &Q, complex* signalPowder,int n_points,double sw,
euler *ang_list,double *weight_list,int n_angles)

{
. . .
}

main()
{
. . .
}

The program is designed to generate the powder
NMR spectrum using either the direct method in the
time-domain or the frequency-domain algorithm
(see Part II), corresponding to using the sub-
routines getPowderSignalStatic( ) and
getPowderSpectrumStatic( ), respectively.
The routine main( ) is the heart of the program and
its structure follows the general guidelines for an
NMR simulation program, as outlined in Part I and II:
(1) First, the relevant input parameters are processed;
(2) next, the spin dynamics calculations are initiated;
(3) finally, the output of these calculations undergo
additional processing (e.g., line broadening).

In the following, we discuss each of steps 1–3 in
detail.

Initialization. The code for carrying out the initial-
ization steps are located in the routine main( ). For
the sake of keeping the code brief, the input parame-
ters are given directly in the source code. However, as
discussed in Part II, a more convenient solution for
feeding the input data into the computer program is, in
general, to provide them from a parameter file be-
cause a simulation requiring any change in these
parameters currently necessitates recompiling the code.

The initialization starts by defining the interaction
parameters needed for the subsequent construction of
the interaction tensors in their respective PAS. Note
that the actual numbers used for the frequencies [tak-
en from Ref. (48)] are input in Hz. These are, how-
ever, directly converted into angular frequencies
through Eq. [I-24], which is performed by the simple
routine HzToRads, located in the included file
aux.h, and defined as

double HzToRads(double Hz)

�{ return Hz*(2.*Pi); }

Further, the orientation of each PAS relative to the
molecular frame is needed. The latter is in the present
code (arbitrarily) chosen such that its z-axis is along
the internuclear 1–2 vector, i.e., coincident with the
PAS of the dipolar coupling. The corresponding trans-
formation angles of the two CSA tensors and the
dipolar tensor is represented by the variables
PM_CSA_1, PM_CSA_2, and PM_D, respectively.
These are of data type euler, defined in Part II.

Next, the matrices for the spin operators are con-
structed and the initial density operator (represented
by the variable rho0 in the code) and observable
operator (Q) defined.

The definition of input parameters concludes by
choosing a frequency span of the spectrum (sw) and
the number of spectral coordinates (n_points) (it
also represents the number of time points sampled in
the direct time-domain calculation).

The next initialization step involves allocating
memory for the arrays needed in the simulation; these
include arrays of spectral frequency coordinates and
amplitudes, as well as lists containing the sets of
orientations and weights used in the powder averaging
procedure. As far as the latter is concerned, we note
that the present simulation conforms to category 2 on
page 36. The current code constructs 2584 ZCW
orientations for the powder calculation, generated
over the upper hemisphere using the routine given in
Appendix A.

Next, each tensor is constructed in its principal axis
system. This is carried out by the routine
L2TensorSetup, explained in the section Initial
Steps of Numerical Simulations of Part II. The
tensors are subsequently transformed to the molecular
frame, effected by the L2tensor_transform rou-
tine (also defined in Part II). The resulting tensors are
subsequently stored in the variable data.
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Finally, the sum of the Hamiltonians for the iso-
tropic spin interactions is calculated (i.e., the two
isotropic chemical shifts and the J coupling). Note
that, as opposed to the Hamiltonians for the anisotro-
pic interactions (which depend on the molecular ori-
entation), the isotropic Hamiltonian needs only be
formed once. The matrix representing the Hamilto-
nian for the sum of the isotropic interactions are
subsequently employed as input parameters to the
spin dynamics routines, together with the initial den-
sity operator and observable operator.

Spin Dynamics Calculations and Powder Averaging.
At this point, everything is prepared for starting the
spin dynamics calculations and powder averaging.
The particular choice of simulation strategy, i.e., the
“time-domain” or “frequency-domain” approach, may
be selected through the variables sim_flag. The
two routines getPowderSignalStatic and
getPowderSpectrumStatic have similar struc-
tures: Both involve a powder loop over the variable
ang_index, which runs over all n_angles of
crystallite orientations. For each orientation �ML

(represented by ML in the code), each tensor compo-
nent [A20

� ]L is calculated using the routine
L2tensorToLabm0, given in Part II. Then, the sum
of Hamiltonians for all anisotropic interactions
(Haniso) is constructed. Next, the total Hamiltonian
is formed, containing both the isotropic and anisotro-
pic contributions.

Finally, the relevant data are provided as input to
the selected spin dynamics calculation routine.
This is the essential difference between the
two routines getPowderSignalStatic and
getPowderSignalStatic; the former calls the
subroutine getSignalStatic, which calculates the
time-domain signal for each orientation, while the rou-
tine getPowderSpectrumStatic uses the fre-
quency-domain routine getSpectrumStatic. The
source code of the spin dynamics routines was explained
in detail in Part II.

After each spin dynamics calculation is completed
for each molecular orientation within the loop, the
estimate of the powder-averaged NMR signal is up-
dated. For example, the frequency-domain routine
returnsthearrayscontainingthefrequencies�uv(�ML)/
2� (stored in the array freq_list) and amplitudes
auv(�ML) (amp_list). Then, the powder-averaged
amplitudes, stored in the array ampPowder, are up-
dated by adding auv(�ML) multiplied by its weight
w(�ML) (weight_list[angle_index]) to the
appropriate “bin” of the amplitude histogram repre-
senting the NMR spectrum (see Part II for a discus-
sion about this mapping). The procedure for updating
the powder-averaged time-domain signal is analo-

gous, with the distinction that the loop counter in the
routine getPowderSignalStatic instead runs
over all points of the time-domain signal.

Postprocessing. After exiting the spin dynamics cal-
culations, Lorentzian line broadening is applied to the
spectrum (in this case corresponding to 500 Hz full
width at half height broadening). Finally, the powder-
averaged data are stored on disk. The simulated spec-
trum, shown in Fig. 11, is in reasonable agreement
with the experimental one. The largest discrepancies
are in the features of the peak originating from the
methylene site, which are presumably due to insuffi-
cient proton decoupling during the experiment.

By changing the input parameters, the program
may also be used for simulating various limiting spin
systems, such as the powder pattern generated from a
single CSA interaction as well as the spectrum from
two dipolar-coupled spins-1/2 in the absence of CSA.
“Direct method” simulations of the two-spin system
under MAS conditions may also be carried out using
the routine getSignalPeriodic (given in Part
II), without extensive modification of the program.
Further extensions to encompass simulations of larger
spin systems will require the construction of addi-
tional spatial tensors and larger matrices for the spin
operators [and is readily carried out using the matrix
routines of the GAMMA library (46, 47 )].

EXAMPLE 2: HETERONUCLEAR SPIN
PAIR UNDER MAS

In this example, we consider a heteronuclear IS spin
system, where SA13C and IA1H. Assume that the
S-spin NMR spectrum is to be calculated under MAS
conditions, i.e., the sideband pattern generated from
the combined effects of the S-spin chemical shift
interaction and the heteronuclear dipolar coupling. In
this case, it is assumed that the 13C spin is close in
space only to one proton, so that additional 13C–1H
couplings need not be considered. Further, we assume
that the 1H is not coupled to other protons in its
surroundings. This approximation rarely holds in or-
ganic solids, as the protons are typically tightly cou-
pled to each other. However, by applying homo-
nuclear proton decoupling pulse sequence (1, 2, 4)
during the acquisition of the 13C signal one may
reduce the problem to an isolated heteronuclear
13C–1H spin pair. In the following, we calculate the
one-dimensional NMR spectrum assuming that de-
tectable 13C transverse magnetization is first gener-
ated by a (�/ 2)y pulse. This correspond to 
̂(0) � Ŝx

at the start of signal acquisition, employing the ob-
servable Q̂ � Ŝ�.

44 EDÉN



Simulations such as the one outlined below are rele-
vant to SLF experiments (2–4, 11–13), which may be
used to measure the magnitudes and relative orientations
between two interactions through their effects on the
spectral sideband patterns they generate. Usually, SLF
experiments are implemented in a two-dimensional fash-
ion, giving a spectrum with the two interactions (in the
present case, IS dipolar couplings and S-spin chemical
shifts) separated along each of the spectral dimensions.

In the following, we first discuss the spin Hamil-
tonian to be used in the numerical simulation and then
consider the C program given in Appendix C.

Hamiltonian

When considering all interactions of the spin system,
the following Hamiltonians are obtained from Eq.
[I-60] and Table I-2:

ĤCS
I (t)���iso

I �	2

3
�CSA

I (t)�Îz [86]

ĤCS
S (t)���iso

S �	2

3
�CSA

S (t)�Ŝz [87]

ĤD
IS
t� � �D

IS
t�	2

3
ÎzŜz [88]

ĤJ
IS � 2�Jiso

IS ÎzŜz [89]

These expressions are derived as in the previous ex-
ample. The total Hamiltonian is dynamically inhomo-
geneous, as it is given by a sum of four commuting
terms. This may be verified by explicit evaluation of
the various commutators involving pairs of the oper-
ators Îz, Ŝz, and ÎzŜz.

Further, only the S-spin chemical shift and hetero-
nuclear coupling Hamiltonians affect the S-spin evo-
lution because the I-spin chemical shift Hamiltonian
commutes with all other terms, as well as with the
observable operator Ŝ�. This implies that the S-spin
NMR spectrum is invariant to the I-spin chemical
shift. This may be shown as follows: We express the
total Hamiltonian of the heteronuclear spin pair as a
sum of two commuting terms:

Ĥtot
t� � Ĥ
t� � ĤCS
I (t) [90]

where Ĥ(t) includes the S-spin chemical shift Ham-
iltonian, as well as the dipolar and J coupling Ham-
iltonians:

Ĥ
t� � ĤCS
S 
t� � ĤD

IS
t� � ĤJ
IS [91]

The aim now is to show that the time evolution of the
density operator is governed solely by the Hamilto-
nian in Eq. [91].

The formal expression for the propagator arising
from a dynamically inhomogeneous Hamiltonian is
given in Eq. [I-141]. Therefore, Ĥtot(t) generates the
following accumulated propagator from the start of
signal acquisition (t0 � 0) out to an arbitrary time
point t:

Ûtot
t, 0� � exp
�i �
0

t

dt�Ĥtot
t��� [92]

This may be factorized as a product of two exponen-
tial operators (i.e., propagators)

Figure 11 S-spin MAS sideband patterns generated from
the combined effects of its CSA and the heteronuclear
dipolar interaction to another spin I. The spectra were cal-
culated for different spinning frequencies and relative tensor
orientations using the program listed in Appendix C. The
left, middle, and right panels correspond to the cases �PM

S

� {0, �/6, 0}, {0, (5/18)�, 0}, and {0, �/2, 0}, respectively.
All other parameters (given in the text) are kept fixed. Each
inset spectrum is a magnification of the center band in the
manifold. The spectrum in (b) is obtained using the exact
input parameters in the code of Appendix C. Note how the
sideband intensities depend on the relative orientations be-
tween the dipolar and CSA tensors and that each sideband is
split into a doublet due to the heteronuclear J-coupling. This
fact may be used to determine the tensor magnitudes and
relative orientations by fitting numerically calculated spec-
tra to experimental results.
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Ûtot
t, 0� � exp
�i �
0

t

dt�Ĥ
t���exp
�i �
0

t

dt�ĤCS
I (t)�

[93]

because Ĥ(t) and ĤCS
I (t) commute with each other.

The time evolution of the density operator is accord-
ing to Eq. [II-3] given by


̂
t� � Ûtot
t, 0�
̂
0�Ûtot
t, 0�† [94]

� exp
�i �
0

t

dt�Ĥ
t���exp
�i �
0

t

dt�ĤCS
I 
t���Ŝx

� exp
�i �
0

t

dt�ĤCS
I 
t���

†

exp
�i �
0

t

dt�Ĥ
t���
†

[95]

Next, we apply a theorem used on page 142 of Part I,
stating that if two operators Â and B̂ commute, i.e., if
[Â, B̂] � 0, then their corresponding exponential
operators also commute: [exp{iÂ}, exp{iB̂}] � 0
(49). This follows because the exponential operator
exp{iÂ} has the same eigenbasis as Â and the fact that
operators sharing the same eigenbasis commute. In other
words, we may deduce the commutation properties of
exponential operators by evaluating the commutators of
the operators in their exponents. Consequently, because
ĤCS

I (t) commutes with the initial density operator Ŝx, so
does its propagator exp{�i  0

t dt�ĤCS
I (t�)} and we may

rearrange Eq. [95] as follows:


̂
t� � exp
�i �
0

t

dt�Ĥ
t���Ŝx

� exp
�i �
0

t

dt�ĤCS
I 
t���exp
�i �

0

t

dt�ĤCS
I 
t���

†

�1̂

� exp
�i �
0

t

dt�Ĥ
t���
†

[96]

However, because the product of an operator with its
inverse (see Eq. [I-4]) is equal to the unity operator,

exp
�i �
0

t

dt�ĤCS
I 
t��exp
�i �

0

t

dt�ĤCS
I 
t��

†

� 1̂ [97]

Equation [96] reduces to


̂
t� � exp
�i �
0

t

dt�Ĥ
t���Ŝxexp
�i �
0

t

dt�Ĥ
t���
†

[98]

which is independent of the I-spin chemical shift
Hamiltonian ĤCS

I (t). This shows that the density op-
erator describing the S-spin dynamics, and hence the
S-spin NMR spectrum, is independent of the I-spin
chemical shift. Henceforth, we may ignore ĤCS

I (t) and
focus only on the Hamiltonian in Eq. [91] for the
numerical simulation. Also, note that Eq. [96] may
not be rearranged so as to make the propagator
exp{�i  0

t dt�Ĥ(t�)} and its inverse exp{�i  0
t

dt�Ĥ(t�)}† cancel, as these do not commute with Ŝx.

Numerical Implementation

The code is given in Appendix C. The spin interaction
parameters chosen in this example are typical for an
aliphatic CH group in an organic solid at a field of
11.7 T. The variable n corresponds to the number of
divisions of the rotational period �r (defined in Part II)
and 987 ZCW orientations (generated over a hemi-
sphere) are employed for the powder averaging. The
S-spin spectrum generated from the program with this
particular choice of parameters is shown in Fig. 11(b).
Note that in the program spin operators of index “1”
correspond to those of the S-spin (i.e., 13C).

The “initializations” are performed as in the previous
example. Then, the routine getISPowderRotating
carries out the spin dynamics calculations, finally
returning to the powder average sideband amplitudes.
This is the computer implementation of the frequen-
cy-domain simulations discussed in Part II and shown
in the flowchart of Fig. II-5, with the distinction that
the present calculations in addition include the carou-
sel averaging over �MR, as discussed above. Instead
of calculating the spectral amplitude from each single
orientation auv

(k)(�MR), the �MR-averaged sideband
amplitude �auv

(k)(�MR)��MR
is generated directly using

Eq. [70].
The routine getISPowderRotating() starts

by constructing a matrix w0, holding the values of the
Fourier coefficients �uv

(0) of the isotropic interactions
for all eigenstate indices u and v. This is calculated
from Eqs. [I-194] and [II-12] by means of the two
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matrices Iz1_diff and Izz12_diff. The ele-
ments of the former comprise differences between
matrix elements of the operator Ŝz such that
Iz1_diff(u, v) corresponds to (Ŝz)vv � (Ŝz)uu.
The matrix Izz12_diff is defined analogously, i.e.,
the element Izz12_diff(u, v) is calculated from
(ÎzŜz)vv � (ÎzŜz)uu.

Next, the powder loop over �MR follows, compris-
ing the following main operations for each orientation
�MR (compare with the flowchart of Fig. II-5):

1. The Fourier components ��
(0) of the CSA and

dipolar tensors are formed using the routine
getSpatialFourierComponents given
in Part II.

2. The eigenvalue Fourier components �uv
(m) are

calculated (Eq. [I-194]).
3. Each of the the phases ��uv(tp, 0) (Eq. [37]) are

constructed for all time points tp � 1, 2, . . . ,
n by means of the subroutine getPhase given
in Appendix C.

4. The coefficients cuv
(k) (Eq. [36]) are calculated by

Fourier transforming the list of exponentials
exp{i��uv(tp, 0)}.

5. The powder-averaged amplitudes are updated
by adding the �-averaged amplitude (Eq. [70])
at the appropriate frequency coordinate, i.e., the
frequency of the array freqPowder being
closest to �uv

(k), following the procedure out-
lined in Part II.

As in Example 1, after exiting the routine for
generating the spectrum broadening is applied to the
resulting spectral peaks. Finally, the spectrum is
stored on disk. The current implementation is re-
stricted to simulation of a heteronuclear IS-spin sys-
tem and various limiting cases thereof, such as the
spectrum of a single CSA tensor. However, by chang-
ing the spin operators this program may also be used
for simulating the spectrum of an isolated quadrupolar
nucleus (27) as long as second-order quadrupolar
effects may be ignored. It is also straightforward to
include additional spins to simulate larger hetero-
nuclear systems, for instance, simulations of one S-
spin coupled to NI I-spins, where NI is kept as an
arbitrary input parameter. This requires forming the
relevant spin operators and constructing all spatial
tensors in an “automated fashion.”

SUMMARY

Numerical simulations are important ingredients in
the development and analysis of solid-state NMR
experiments. In Part I [Ref. (8)], we outlined the basic

theory for simulating the NMR spectrum from a sin-
gle molecular orientation. In Part II [Ref. (9)], we
discussed numerical implementations for carrying out
computer simulations. The emphasis was on calculat-
ing the time evolution of the spin density matrix
during a particular experiment, from which the NMR
time-domain signal and spectrum may be obtained. In
these articles, we focused on applications to cases
where the quantum mechanical description of the
experiment involved spin evolution under a Hamilto-
nian that was either time independent (e.g., the case of
a static solid sample) or time periodic and self-com-
muting (e.g., a heteronuclear spin pair under MAS).
Extensions to simulations to more complicated cases
(e.g., strongly coupled spin systems under MAS) were
briefly outlined in Part II.

In this article, which built directly on Parts I and II,
we discussed theoretical and practical aspects of pow-
der averaging in solid-state NMR: why the NMR
signal is dependent on the spatial molecular orienta-
tion, the fundamental equations for calculating pow-
der averages, and how they may be implemented on a
computer. We also discussed and classified orienta-
tional symmetry of the NMR domain time signal,
which is useful in practice to speed up calculations of
powder averages. Further, the concept of “carousel
symmetry” was demonstrated as a route for analyti-
cally calculating the average over one of the orienta-
tional variables to further improve the accuracy and
speed of the numerical simulation. Finally, to exem-
plify the philosophy of writing of a computer pro-
gram, source code for two simulation programs were
presented and discussed. They are intended to provide
a platform for subsequent modifications to other sim-
ulations.
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APPENDIX A

Here, we outline the specific implementations of the
STEP and ZCW methods used in the code for Exam-
ples 1 and 2, respectively. There also exist many other
versions of these schemes (18, 26, 29, 30, 32, 34).
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Figure 7 illustrates graphically some STEP and ZCW
sets, with each orientation visualized as a point of the
unit sphere (also see Fig. I-4).

STEP Scheme

The STEP method divides the planar region { x, y}
into a grid of evenly spaced coordinates { xi, yj}.
These are mapped onto the sphere, i.e., converted into
Euler angles describing an orientation that may be
represented on the unit sphere. The mappings used
here are

�i
STEP � xi [99]

and

�j
STEP � yj [100]

Assuming that N� and N� samples are used for x and
y, respectively, the resulting set comprises N�N� ori-
entations, each given by

�i
STEP �

2�

N�a3

a1i � a2�, i � 0, 1, 2, . . . N� � 1

[101]

�j
STEP �

�

2N�b

2j � 1�, j � 0, 1, 2, . . . N� � 1

[102]

where the numbers {al} are components of a vector a�,
which depends on the integration range and how the
planar range is divided. There are many possibilities
(34 ). The sampling of the grid points { xi, yj} em-
ployed here corresponds to

a� � �
1, 0, 1� for full sphere and hemisphere

2, 1, 8� for octant

[103]

Likewise, the number b depends on the integration
range as follows:

b � �1 for full sphere
2 for hemisphere and octant [104]

The weight associated with the angle {�i, �j} is
given by

wj
STEP � NSTEPsin��j� [105]

with the normalization constant

NSTEP � �N� �
j�0

N��1

sin��j���1

[106]

When using these equations to generate the STEP
sets, it is recommended to use equal increments (i.e.,
“steps”) in the two integration variables � and �. This
implies using N� � N� for the octant sets, N� � 4N�

for the hemispheric sets, and N� � 2N� for the full
sphere.

ZCW Scheme

It is out of the scope of this article to justify the
generic equations for the ZCW sets. Detailed expla-
nations may be found in Refs. (28–30, 32). The ZCW
partitions are generated from numbers FM of the
Fibonacci series (15). These are given by the recur-
sion

FM � FM�1 � FM�2, M � 0, 1, 2, . . .

[107]

with F0 � 8 and F1 � 13. For a given integer M, the
corresponding ZCW set comprises

NM � FM�2 [108]

samples over the planar range { x, y}. Next, the
mappings

�i
ZCW � xi [109]

and

�j
ZCW � arccos�yj� [110]

are used, giving the Euler angles

�j
ZCW �

2�

c3
mod� jFM/NM, 1�,

j � 0, 1, 2, . . . , NM � 1 [111]

�j
ZCW � arccos	c1
c2mod� j/NM, 1� � 1��,

j � 0, 1, 2, . . . , NM � 1 [112]

As for the STEP implementation, the numbers {cl}
are components of a vector c�, given by

c� � �
1, 2, 1� for full sphere

�1, 1, 1� for hemisphere

2, 1, 8� for octant

[113]
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The weights are equal for all angles in a ZCW set;
they are calculated as the inverse of the number of
orientations:

wj
ZCW � NM

�1 [114]

Implementations in C

The C code implementations of the equations above
for producing sets of orientations for the STEP
(genSTEP) and ZCW (genZCW) methods are
given below. Each routine may generate orienta-
tions according to the choice of the input string

sphereType, which is to be specified as “full,”
“hemi,” or “oct” for integration over the full
sphere, the upper hemisphere, and octant, respec-
tively. The routine genZCW returns a list of Euler
angles (of data type euler, defined in Part II)
and their corresponding weights, stored in
angle_list and weight_list, respectively.
The routine getNumberZCW calculates the num-
ber of orientations from the value of the input
parameter M. The routine for generating the STEP
angle sets is implemented similarly.

The ZCW routines are used in the programs given
in Appendices B and C.

//********* ZCW ROUTINES ***********
int getNumberZCW(int M)
//returns the number of ZCW angles for the given integer M�2,3,4,. . .
{
int j,gM�5,gMminus1�3;
int sum�5;
for(j�0;j��M;j��) {
sum�(gM�gMminus1);
gMminus1�gM;
gM�sum;
}
return sum;
}

void genZCW(euler *angle_list,double *weight_list,int M,char *sphereType)
//constructs the set containing getNumberZCW(M) ZCW orientations {angle_j,weight_j}
//for the given choice of symmetry: sphereType is either of:{ full, hemi, oct }
{
double c[3]; //define the vector ’c’, and assign its elements
if (!strcmp(sphereType,“full”)) {c[0]�1.;c[1]�2.;c[2]�1.;};
if (!strcmp(sphereType,“hemi”)) {c[0]��1.;c[1]�1;c[2]�1.;};
if (!strcmp(sphereType,“oct”)) {c[0]��1.;c[1]�1;c[2]�4.;};

int N�getNumberZCW(M); //total number of angles
int g2�getNumberZCW(M�2);
for(int m�0;m��(N�1);m�� ) {
angle_list[m].beta�acos( c[0]*(c[1]*fmod(m/double(N),1.)�1.) );
angle_list[m].alpha�2.*Pi*( fmod( (m*g2/double(N)),1.) )/c[2];
angle_list[m].gamma�0.;
weight_list[m]�1./double(N);
}
}

//********* STEP ROUTINE ***********
void genSTEP(euler *angle_list,double *weight_list,int N_alpha,int N_beta,char *sphereType)
//constructs the set containing (N_alpha*N_beta) STEP orientations {angle_j,weight_j} for the given
//choice of symmetry: sphereType is either of:{ full, hemi, oct }
{
double b,a[3],norm_step�0.; //define b and the elements of the vector ’a’
if (!strcmp(sphereType,“full”)) {a[0]�1.;a[1]�0.;a[2]�1.;b�1.;};
if (!strcmp(sphereType,“hemi”)) {a[0]�1.;a[1]�0.;a[2]�1.;b�2.;};
if (!strcmp(sphereType,“oct”)) {a[0]�2.;a[1]�1.;a[2]�8.;b�2.;};

double inc_alpha�2.*Pi/( N_alpha*a[2] ); //calculate incrementation in alpha angle
double inc_beta�Pi/( 2.*N_beta*b ); //calculate incrementation in beta angle
//calculate the normalization factor
for(int j�0;j�N_beta;j��) norm_step �� sin( inc_beta*( 2.*j�1.) );
norm_step�( 1./(N_alpha*norm_step) );
//assign the angles and weights
for(int j�0;j�N_beta;j�� ) {
for(int i�0;i�N_alpha;i�� ){
angle_list[j*N_alpha�i].alpha�inc_alpha*( a[1]� i*a[0] );
angle_list[j*N_alpha�i].beta�inc_beta*( 2.*j�1.);
angle_list[j*N_alpha�i].gamma�0.;
weight_list[j*N_alpha�i]�norm_step*sin( inc_beta*( 2.*j�1.) );
}
}
}
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APPENDIX B

#include �math.h# //standard C-library of mathematical functions
#include �complex.h# //from GAMMA library
#include �matrix.h# //from GAMMA library
#include �aux.h# //general auxiliary routines
#include �spinOperators.h# //for constructing the spin operators
#include �spinDynamics.h# //spin dynamics calculation routines
#include �powderSchemes.h# //generate orientations for powder averaging

// STATIC.cc
// Simulation of the powder spectrum from a homonuclear spin-pair, experiencing a time-independent
// Hamiltonian. The calculation may be carried out both in time- and frequency-domains.

struct spinPars{ //data type containing all spin parameters
matrix CSA_1_M;
matrix CSA_2_M;
matrix D_M;
};

void getPowderSpectrumStatic( const spinPars &data,const matrix &Hiso, const matrix &rho0,
const matrix &Q, complex *ampPowder,int n_points, double sw,
euler *ang_list,double *weight_list,int n_angles)

// Simulation of powder spectrum in the frequency domain
// INPUT: The spin parameters, isotropic part of the Hamiltonian (Hiso), initial density operator (rho0),
// observable (Q), spectral window (sw) and the list of powder angles and weights
// OUTPUT: The spectrum containing n-points of the powder averaged amplitudes (ampPowder)
{
int m,n_transitions,n_states�rho0.rows();
double freq,*freq_list,res�sw/double(n_points);
double wCSA_1,wCSA_2,wD;
complex *amp_list;
euler ML; //the M�#L transformation (“powder”) angle
matrix Haniso; //the total Hamiltonian for the anisotropic interactions
freq_list�d_array1(n_states*n_states); //lists of frequencies for one molecular orientation
amp_list�c_array1(n_states*n_states); //list of amplitudes for one molecular orientation

for(int angle_index�0;angle_index�n_angles;angle_index��) { //powder loop

ML�ang_list[angle_index]; //get M�#L transformation angle
wCSA_1�L2tensorToLab_m0( data.CSA_1_M,ML ); //calculate the Lab-frame m�0 component of CSA tensor #1
wCSA_2�L2tensorToLab_m0( data.CSA_2_M,ML );
wD�L2tensorToLab_m0( data.D_M,ML ); //calculate the Lab-frame m�0 component of DD-tensor
//construct the Hamiltonian for the anisotropic parts for the current orientation
Haniso�(wCSA_1*sqrt(2./3.)*Iz1)�(wCSA_2*sqrt(2./3.)*Iz2)�(wD*T12_20);
//call the spin dynamics calculation routine
getSpectrumStatic( Hiso�Haniso,rho0,Q,freq_list,amp_list,n_transitions );
for(int j�0;j�n_transitions;j��) {
freq�freq_list[j];
m�int(freq/res � (sign(freq)*0.5) )�n_points/2-1;
//update the powder averaged amplitude, provided the ’bin_index’ m is in the proper range
if ((m#�0 && (m�n_points)) ampPowder[m]��weight_list[angle_index]*amp_list[j];

}

} //closes powder loop
del_d_array1(freq_list); //free allocated memory
del_c_array1(amp_list);
}

void getPowderSignalStatic( const spinPars &data,const matrix &Hiso, const matrix &rho0,
const matrix &Q, complex* signalPowder,int n_points,double sw,
euler *ang_list,double *weight_list,int n_angles)

// Simulation of powder signal by the direct method
// INPUT: The spin parameters, isotropic part of the Hamiltonian (Hiso), initial density operator (rho0),
// observable (Q), spectral window (sw) and the list of powder angles and weights
// OUTPUT: n_points of the powder averaged time signal (signalPowder)
{
double wCSA_1,wCSA_2,wD;
complex *signal_list; //the signal from one molecular orientation
euler ML; //M�#R transformation angle
matrix Haniso; //the Hamiltonian for sum of anisotropies
int n_states�rho0.rows();
signal_list�c_array1(n_points); //number of eigenstates

for(int angle_index�0;angle_index�n_angles;angle_index��) { //powder loop

ML�ang_list[angle_index]; //get M�#L transformation angle
wCSA_1�L2tensorToLab_m0( data.CSA_1_M,ML ); //calculate the Lab-frame m�0 component for CSA_1
wCSA_2�L2tensorToLab_m0( data.CSA_2_M,ML ); //calculate the Lab-frame m�0 component for CSA_2
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wD�L2tensorToLab_m0( data.D_M,ML ); //calculate the Lab-frame m�0 component for dipolar coupling
Haniso�(wCSA_1*sqrt(2./3.)*Iz1)�(wCSA_2*sqrt(2./3.)*Iz2)�(wD*T12_20);
//call the spin dynamics calculation routine and update the powder average estimate of signal
getSignalStatic( Hiso�Haniso,rho0,Q,signal_list,n_points,(1./sw) );
for(int j�0;j�n_points;j��) signalPowder[j] �� weight_list[angle_index]*signal_list[j];

}
del_c_array1(signal_list); //free allocated memory
}

main()
{
//******************************************************************
//********* INITIALIZATION **********
//******************************************************************
int ZCWLevel,n_points,sim_flag;
char out_file[100];
double sw,width;
double CSiso_1,CSiso_2,CSAaniso_1,CSAeta_1,CSAaniso_2,CSAeta_2,Jiso,b_12; //spin interaction parameters
euler PM_CSA_1,PM_CSA_2,PM_D;
matrix Q,rho0;

//**************** INPUT PARAMETERS *******************
CSiso_1�HzToRads(�6204.);CSiso_2�HzToRads(7204.);Jiso�HzToRads(53.); //parameters for isotropic parts
CSAaniso_1�HzToRads(7500.);CSAeta_1�0.88; //CSA parameters of spin 1 (carboxyl)
CSAaniso_2�HzToRads(1956.);CSAeta_2�0.98; //CSA parameters of spin 2 (methylene)
b_12�HzToRads(�2135.); //dipolar coupling
setEuler( PM_CSA_1, �0.7,88.5,52.5 ); //CSA_1 P�#M angles in degrees
setEuler( PM_CSA_2, 99.4,146.0,138.9 ); //CSA_2 P�#M angles in degrees
setEuler( PM_D, 0.,0.,0. ); //dipolar P�#M angles
S0setup(2); //construct spin operators for two spins
Q�Ip1�Ip2; //observable operator
rho0�Ix1�Ix2; //initial density operator
sw�40000.; //spectral window (Hz)
n_points�8192; //number of points in the spectrum/signal
width�500.; //width (in Hz) of the line-broadening used
ZCWlevel�12; //choice of ZCW set
char sphereSymm[10]�“hemi”; //orientations generated over hemi sphere
sim_flag�0; //sim_flag�0 �# time-domain; sim_flag�1 �# freq-domain
cout �� ’�n’ �� “out_file�”;cin ## out_file; //get the output file from the user

spinPars data;
matrix CSA_1_M,CSA_2_M,D_M,Hiso;
complex *ampPowder,*signalPowder;
double *freqPowder,*ampPowder_re,*weight_list;
euler *ang_list; //list of weighted euler angles
int n_angles�getNumberZCW(ZCWlevel); //calculate the number of ZCW orientations
cout �� ’�n’ �� “n_angles�” �� n_angles �� ’�n’;
ang_list�eul_array1(n_angles); //allocate memory for lists of powder angles
weight_list�d_array1(n_angles); //allocate memory for lists of weights
genZCW(ang_list,weight_list,ZCWlevel,sphereSymm); //generate powder angles
freqPowder�d_array1(n_points): //allocate memory for spectral frequency coordinates
ampPowder�c_array1(n_points); //allocate memory for spectral amplitudes
signalPowder�c_array1(n_points); //allocate memory for values of powder averge signal
ampPowder_re�d_array1(n_points);
for(int j�0;j�n_points;j��) freqPowder[j]��sw/2�(j�1)�sw/double(n_points); //generate the frequencies

//construct the tensors in their PAS, and transform P�#M
CSA_1_M�L2tensor_transform( L2TensorSetup( CSAaniso_1, CSAeta_1 ),PM_CSA_1 );
CSA_2_M�L2tensor_transform( L2TensorSetup( CSAaniso_2, CSAeta_2 ),PM_CSA_2 );
D_M�L2tensor_transform( L2TensorSetup( 2.*b_12, 0. ),PM_D );
Hiso�(CSiso_1*Iz1)�(CSiso_2*Iz2)�(Jiso*I12); //Hamiltonian for all isotropic interactions
data.CSA_1_M�CSA_1_M;data.CSA_2_M�CSA_2_M;data.D_M�D_M; //store the tensors in the variable ‘data’

//**************************************************************
//*** DO SPIN DYNAMICS SIMULATION & APPLY LINEBROADENING ****
//**************************************************************
if (sim_flag) { //choose between frequency and time-domain simulation
getPowderSpectrumStatic(data,Hiso,rho0,Q,ampPowder,n_points,sw,ang_list,weight_list,n_angles);
lineBroaden( ampPowder,width,n_points,1./sw,0);
}
else {
getPowderSignalStatic(data,Hiso,rho0,Q,signalPowder,n_points,sw,ang_list,weight_list,n_angles);
apodize(signalPowder,width,n_points,1.0/sw,0); //apply decay function
FFT(signalPowder,ampPowder,n_points,1); //transform the frequency domain
}
re_list( ampPowder,ampPowder_re,n_points ); //take real part of spectrum
save_data( freqPowder,ampPowder_re,n_points,out_file ); //store data on disk
cout �� ’�n’;
}
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APPENDIX C

#include �math.h# //standard C-library of mathematical functions
#include �complex.h# //from GAMMA
#include �matrix.h# //from GAMMA
#include �aux.h# //general auxiliary routines
#include �spinOperators.h# //for constructing the spin operators
#include �powderSchemes.h# //generate orientations for powder averaging

// CSA�IS.cc
// Simulation of the powder S-spin spectrum from an IS system under MAS

struct spinPars{ //data type containing all spin parameters
double CSiso_1;
double CSiso_2;
double Jiso;
matrix CSA_1_M;
matrix CSA_2_M;
matrix D_M;
}:

double getPhase( const matrix &FourComp, double wr, double t )
// OUTPUT: the phase accumulated from t�0 to t�t of an interaction with Fourier components as input in FourComp.
// The symmetry of the wˆ(m) components with respect to sign reversal of m is used
// to reduce the summation range to m�1,2.
{
double sum�0.;
for(int m�1;m��2;m��) sum �� ( Im(FourComp.get(0,2�m)*(exp(I*m*wr*tb)�1.))/(m*wr) );
return 2.*sum;
}

void getISPowderRotating( spinPars data,const matrix &rho0, const matrix &Q,double wr,int n,complex *ampPowder,
int n_points,double sw, euler *ang_list,double *weight_list,int n_angles)

// simulation of S-spin powder spectrum in the frequency domain under MAS
// INPUT: the spin parameters, initial density operator (rho0), observable (Q), spectral window (sw),
// the parameter n, and a list of powder angles and weights
// OUTPUT: the powder averaged amplitudes (ampPowder) of size n_points
{
int u,v,k,bin_index,n_states�rho0.rows();
double freq,w0_uv,tau�2*Pi/(wr*double(n));
double res�sw/double(n_points); //frequency resolution
complex phase,a_uv,*amp_list,*exp_phase_uv,*c_uv;
euler MR; //M�#R transformation angle
matrix w_uv,CSA_M,CSA_FourierComponents,D_M,D_FourierComponents;
amp_list�c_array1(n_states*n_states); //amplitudes from one molecular orientation
exp_phase_uv�c_array1(n); //exponents of the phases
c_uv�c_array1(n); //array of c_uv for one molecular orientation

matrix Iz1_diff(n_states,n_states);
matrix Izz12_diff(n_states,n_states);
matrix w0(n_states,n_states); //matrix of isotropic m�0 eigenvalues
for(u�0;u�n_states;u��) { //u loop over states
for(v�0;v�n_states;v��) { //v loop over states
//get the difference between the matrix elements of the spin operators,
//and construct the m�0 Hamiltonian eigenvalues
Iz1_diff(u,v)�(Iz1.get(v,v)-Iz1.get(u,u) );
Izz12_diff(u,v)�(Izz12.get(v,v)-Izz12.get(u,u) );
w0(u,v)�( Iz1_diff(u,v)*data.CSiso_1 � Izz12_diff(u,v)*data.Jiso );
}
}

for(int angle_index�0;angle_index�n_angles;angle_index��) { //powder loop
MR�ang_list[angle_index]; //get the current M�#R angle
CSA_FourierComponents�getSpatialFourierComponents( data.CSA_1_M,MR,MagAng );
D_FourierComponents�getSpatialFourierComponents( data.D_M,MR,MagAng );
for(u�0;u�n_states;u��) { //u loop over states
for(v�0;v�n_states;v��) { //v loop over states

a_uv�rho0.get(u,v)*Q.get(v,u); //calculate the amplitude a_uv
if ( norm(a_uv)#1e-8 ) { //only continue from here if �a�#10e-8
//calculate the isotropic and anisotropic parts of the eigenvalue difference for states u & v
w_uv�( Iz1_diff(u,v)*sqrt(2./3.)*CSA_FourierComponents�

sqrt(2./3.)*Izz12_diff(u,v)*D_FourierComponents );
w0_uv�Re(w0.get(u,v));
for(k�0;k�n;k��) exp_phase_uv[k]�exp( I*getPhase( w_uv,wr,(k�1)*tau) );
FFT( exp_phase_uv,c_uv,n,0 ); //calculate cˆ (k)_uv by an FFT
for(k�0;k�n;k��){
freq�( w0_uv�(wr*double(k�n/2�1)) )/(2.*Pi); //get current frequency position
bin_index�int( freq/res�(sign(freq)*0.5) )�n_points/2-1; //update powder amplitudes
if ((bin_index#�0) && (bin_index�n_points))
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ampPowder[bin_index] �� (weight_list[angle_index]*a_uv*square_norm(c_uv[k]));
}
}

} //closes v loop over states
} //closes u loop over states

} //closes powder loop
del_c_array1(amp_list); //free allocated memory
del_c_array1(exp_phase_uv);
del_c_array1(c_uv);
}

main()
{
//******************************************************************
//********* INITIALIZATION **********
//******************************************************************
int n,ZCWlevel,n_points;
double sw,width,wr,CSiso_1,CSiso_2,CSAaniso_1,CSAeta_1,Jiso,b_12;
char out_file[100];
euler PM_CSA_1,PM_D;
matrix Q,rho0;

//******** INPUT PARAMETERS *******
CSiso_1�HzToRads(0.0);Jiso�HzToRads(200.); //S-spin is labeled 1
CSAaniso_1�HzToRads(�1900.);CSAeta_1�0.4; //I-spin is labeled 2
setEuler( PM_CSA_1,0.,30.,0. );
b_12�HzToRads(�21000.);setEuler( PM_D,0.,0.,0. );
wr�HzToRads(5000.); //rotational frequency
n�32; //divide rotational period into n�32 segments
S0setup(2); //construct spin operators for two spins
Q�Ip1; //observable operator; only observe S-spin
rho0�Ix1; //initial density operator
sw�80000.; //spectral window
n_points�16384; //total number of spectral points
width�50.; //broadening (FWHH in Hz)
ZCWlevel�10; //choice of ZCW set
char sphereSymm[10]�“hemi”;
cout �� ’�n’ �� “out_file�”;cin.getline(out_file,100);
//*****************************************************************

spinPars data;
matrix CSA_M,D_M;
complex *ampPowder;
double *freqPowder,*ampPowder_re,*weight_list;
euler *ang_list;

int n_angles�getNumberZCW(ZCWlevel); //construct powder angles & allocate memory
cout �� ’�n’ �� “n_angles�” �� n_angles �� ’�n’;
ang_list�eul_array1(n_angles); //allocate memory for lists of powder angles
weight_list�d_array1(n_angles); //allocate memory for lists of weights
genZCW(ang_list,weight_list,ZCWlevel,sphereSymm); //generate powder angles
freqPowder�d_array1(n_points); //allocate memory for spectral frequency coordinates
ampPowder�c_array1(n_points); //allocate memory for spectral amplitudes
ampPowder_re�d_array1(n_points);
for(int j�0;j�n_points;j��) freqPowder[j]��sw/2�(j�1)*sw/double(n_points); //generate frequency array
//construct the tensors in their PAS, and transform P�#M
CSA_M�L2tensor_transform( L2TensorSetup( CSAaniso_1, CSAeta_1 ),PM_CSA_1 );
D_M�L2tensor_transform( L2TensorSetup( 2.*b_12, 0. ),PM_D );
data.CSiso_1�CSiso_1;data.Jiso�Jiso; //store all interactions in ’data’
data.CSA_1_M�CSA_M;data.D_M�D_M;

//**** CALL ROUTINE FOR SPIN DYNAMICS CALCULATION *****
getISPowderRotating( data,rho0,Q,wr,n,ampPowder,n_points,sw,ang_list,weight_list,n_angles);

//**** POST PROCESSING: LINE BROADENING *****
lineBroaden( ampPowder,width,n_points,1./sw,0);
re_list( ampPowder,ampPowder_re,n_points ); //take real part of amplitudes
save_data( freqPowder,ampPowder_re,n_points,out_file ); //store spectrum on disk
cout �� ’�n’;
}
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